题目内容
用换元法解方程m2+m+1=
时,若设m2+m=n,原方程可化为( )
| 2 |
| m2+m |
| A、n2+n+2=0 |
| B、n2-n-2=0 |
| C、n2-n+2=0 |
| D、n2+n-2=0 |
分析:本题考查用换元法解分式方程的能力,要注意方程中m2+m与n的关系,代入换元.
解答:解:由m2+m=n可得
=
,
∴原方程可化为n+1=
,
去分母整理得:n2+n-2=0.故选D.
| 2 |
| m2+m |
| 2 |
| n |
∴原方程可化为n+1=
| 2 |
| n |
去分母整理得:n2+n-2=0.故选D.
点评:用换元法解分式方程可将方程化繁为简,是解分式方程常用的一种方法,要注意总结能够用换元法解的分式方程的特点.
练习册系列答案
相关题目