题目内容
【题目】如图,平行四边形OABC的顶点O在坐标原点,顶点A,C在反比例函数y= 的图象上,点A的横坐标为4,点B的横坐标为6,且平行四边形OABC的面积为9,则k的值为_____.
【答案】6
【解析】
首先过点C作CD⊥x轴于点D,过点A作AE⊥x轴于点E,作点B作BF⊥x轴,作AF∥x轴,交于点F,连接AC,易求得点C的横坐标为2,又由平行四边形OABC的面积为9,可得:
解此方程即可求得k的值.
解:过点C作CD⊥x轴于点D,过点A作AE⊥x轴于点E,作点B作BF⊥x轴,作AF∥x轴,交于点F,连接AC,
∵四边形OABC是平行四边形,
∴OC=AB,OC∥AB,
∴∠OCB+∠ABC=180°,
∴∠OCD+∠BCD+∠ABC=180°,
∵CD∥BF,
∴∠BCD+∠CBF=180°,
∴∠BCD+∠ABC+∠ABF=180°
∴∠OCD=∠ABF,
在△OCD和△ABF中,
∴△OCD≌△ABF(AAS),
∴OD=AF,
∵点A的横坐标为4,点B的横坐标为6,
∴AF=2,
∴OD=2,
即点C的横坐标为2,
∵顶点A,C在反比例函数的图象上,
∴点A点C,S△OCD=S△OAE,
∴DE=OE-OD=4-2=2,
∵平行四边形OABC的面积为9,
∴S△OAC=,
∴S△OAC=S△OCD+S梯形AEDC-S△OAE=S梯形AEDC= =
解得:k=6.
故答案为:6.
练习册系列答案
相关题目