题目内容
观察下列等式:
=1-
,
=
-
,
=
-
,将以上三个等式两边分别相加得:
+
+
=1-
+
-
+
-
=1-
=
(1)猜想并写出:
=
-
-
;
(2)计算:
+
+
+…+
.
1 |
1×2 |
1 |
2 |
1 |
2×3 |
1 |
2 |
1 |
3 |
1 |
3×4 |
1 |
3 |
1 |
4 |
1 |
1×2 |
1 |
2×3 |
1 |
3×4 |
1 |
2 |
1 |
2 |
1 |
3 |
1 |
3 |
1 |
4 |
1 |
4 |
3 |
4 |
(1)猜想并写出:
1 |
n(n+1) |
1 |
n |
1 |
n+1 |
1 |
n |
1 |
n+1 |
(2)计算:
1 |
1×2 |
1 |
2×3 |
1 |
3×4 |
1 |
n(n+1) |
分析:(1)观察可得结果是分子均为1,分母分别为相邻2个数的分数的差;
(2)利用(1)得到的结果进行计算即可.
(2)利用(1)得到的结果进行计算即可.
解答:解:(1)
=
-
,
=
-
,
=
-
,
…
=
-
;
故答案为
-
;
(2)原式=1-
+
-
+…+
-
=1-
=
=
.
1 |
1×2 |
1 |
1 |
1 |
2 |
1 |
2×3 |
1 |
2 |
1 |
3 |
1 |
3×4 |
1 |
3 |
1 |
4 |
…
1 |
n(n+1) |
1 |
n |
1 |
n+1 |
故答案为
1 |
n |
1 |
n+1 |
(2)原式=1-
1 |
2 |
1 |
2 |
1 |
3 |
1 |
n |
1 |
n+1 |
=1-
1 |
n+1 |
=
n+1-1 |
n+1 |
=
n |
n+1 |
点评:考查分数的规律性计算;得到分子为1,分母为相邻2个数的分数的拆分方法是解决本题的关键.
练习册系列答案
相关题目