题目内容

观察下列等式:
1
1×2
=1-
1
2
1
2×3
=
1
2
-
1
3
1
3×4
=
1
3
-
1
4

把以上三个等式两边分别相加得:
1
1×2
+
1
2×3
+
1
3×4
=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
=1-
1
4
=
3
4

(1)猜想并写出:
1
n(n+1)
=
1
n
-
1
n+1
1
n
-
1
n+1

(2)直接写出下列各式的计算结果:
1
1×2
+
1
2×3
+
1
3×4
+…+
1
2008×2009
=
2008
2009
2008
2009

1
1×2
+
1
2×3
+
1
3×4
+…+
1
n(n+1)
=
n
n+1
n
n+1

(3)探究并计算:
1
2×4
+
1
4×6
+
1
6×8
+…+
1
2006×2008
分析:观察得到分子为1,分母为两个相邻整数的分数可化为这两个整数的倒数之差,即
1
n(n+1)
=
1
n
-
1
n+1
;然后根据此规律把各分数转化,再进行分数的加减运算.对于(3)先提
1
4
出来,然后和前面的运算方法一样.
解答:解:(1)
1
n(n+1)
=
1
n
-
1
n+1


(2)①
1
1×2
+
1
2×3
+
1
3×4
+…+
1
2008×2009

=1-
1
2
+
1
2
-
1
3
+…+
1
2008
-
1
2009

=1-
1
2009

=
2008
2009

1
1×2
+
1
2×3
+
1
3×4
+…+
1
n(n+1)

=1-
1
2
+
1
2
-
1
3
+…+
1
n
-
1
n+1

=1-
1
n+1

=
n
n+1


(3)
1
2×4
+
1
4×6
+
1
6×8
+…+
1
2006×2008

=
1
4
×(
1
1×2
+
1
2×3
+
1
3×4
+…+
1
1003×1004

=
1
4
×(1-
1
2
+
1
2
-
1
3
+…+
1
1003
-
1
1004

=
1
4
×(1-
1
1004

1
4
×
1003
1004

=
1003
4016

故答案为:
1
n
-
1
n+1
2008
2009
n
n+1
点评:本题考查了关于数字变化的规律:通过观察数字之间的变化规律,得到一般性的结论,再利用此结论解决问题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网