题目内容
观察下列等式:
=1-
,
=
-
,
=
-
,
把以上三个等式两边分别相加得:
+
+
=1-
+
-
+
-
=1-
=
.
(1)猜想并写出:
=
-
-
.
(2)直接写出下列各式的计算结果:
①
+
+
+…+
=
;
②
+
+
+…+
=
.
(3)探究并计算:
+
+
+…+
.
| 1 |
| 1×2 |
| 1 |
| 2 |
| 1 |
| 2×3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3×4 |
| 1 |
| 3 |
| 1 |
| 4 |
把以上三个等式两边分别相加得:
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 4 |
| 3 |
| 4 |
(1)猜想并写出:
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| n |
| 1 |
| n+1 |
(2)直接写出下列各式的计算结果:
①
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| 2008×2009 |
| 2008 |
| 2009 |
| 2008 |
| 2009 |
②
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| n(n+1) |
| n |
| n+1 |
| n |
| n+1 |
(3)探究并计算:
| 1 |
| 2×4 |
| 1 |
| 4×6 |
| 1 |
| 6×8 |
| 1 |
| 2006×2008 |
分析:观察得到分子为1,分母为两个相邻整数的分数可化为这两个整数的倒数之差,即
=
-
;然后根据此规律把各分数转化,再进行分数的加减运算.对于(3)先提
出来,然后和前面的运算方法一样.
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| 4 |
解答:解:(1)
=
-
;
(2)①
+
+
+…+
=1-
+
-
+…+
-
=1-
=
;
②
+
+
+…+
=1-
+
-
+…+
-
=1-
=
;
(3)
+
+
+…+
=
×(
+
+
+…+
)
=
×(1-
+
-
+…+
-
)
=
×(1-
)
═
×
=
.
故答案为:
-
;
;
.
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
(2)①
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| 2008×2009 |
=1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2008 |
| 1 |
| 2009 |
=1-
| 1 |
| 2009 |
=
| 2008 |
| 2009 |
②
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| n(n+1) |
=1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
=1-
| 1 |
| n+1 |
=
| n |
| n+1 |
(3)
| 1 |
| 2×4 |
| 1 |
| 4×6 |
| 1 |
| 6×8 |
| 1 |
| 2006×2008 |
=
| 1 |
| 4 |
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| 1003×1004 |
=
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 1003 |
| 1 |
| 1004 |
=
| 1 |
| 4 |
| 1 |
| 1004 |
═
| 1 |
| 4 |
| 1003 |
| 1004 |
=
| 1003 |
| 4016 |
故答案为:
| 1 |
| n |
| 1 |
| n+1 |
| 2008 |
| 2009 |
| n |
| n+1 |
点评:本题考查了关于数字变化的规律:通过观察数字之间的变化规律,得到一般性的结论,再利用此结论解决问题.
练习册系列答案
相关题目