题目内容
【题目】已知抛物线y=﹣x2﹣4x+c经过点A(2,0).
(1)求抛物线的解析式和顶点坐标;
(2)若点B(m,n)是抛物线上的一动点,点B关于原点的对称点为C.
①若B、C都在抛物线上,求m的值;
②若点C在第四象限,当AC2的值最小时,求m的值.
【答案】(1)抛物线解析式为y=﹣x2﹣4x+12,顶点坐标为(﹣2,16);(2)①m=2或m=﹣2;②m的值为 .
【解析】(1)把点A(2,0)代入抛物线y=﹣x2﹣4x+c中求得c的值,即可得抛物线的解析式,根据抛物线的解析式求得抛物线的顶点坐标即可;(2)①由B(m,n)在抛物线上可得﹣m2﹣4m+12=n,再由点B关于原点的对称点为C,可得点C的坐标为(﹣m,﹣n),又因C落在抛物线上,可得﹣m2+4m+12=﹣n,即m2﹣4m﹣12=n,所以﹣m2+4m+12=m2﹣4m﹣12,解方程求得m的值即可;②已知点C(﹣m,﹣n)在第四象限,可得﹣m>0,﹣n<0,即m<0,n>0,再由抛物线顶点坐标为(﹣2,16),即可得0<n≤16,因为点B在抛物线上,所以﹣m2﹣4m+12=n,可得m2+4m=﹣n+12,由A(2,0),C(﹣m,﹣n),可得AC2=(﹣m﹣2)2+(﹣n)2=m2+4m+4+n2=n2﹣n+16=(n﹣)2+,所以当n=时,AC2有最小值,即﹣m2﹣4m+12=,解方程求得m的值,再由m<0即可确定m的值.
(1)∵抛物线y=﹣x2﹣4x+c经过点A(2,0),
∴﹣4﹣8+c=0,即c=12,
∴抛物线解析式为y=﹣x2﹣4x+12=﹣(x+2)2+16,
则顶点坐标为(﹣2,16);
(2)①由B(m,n)在抛物线上可得:﹣m2﹣4m+12=n,
∵点B关于原点的对称点为C,
∴C(﹣m,﹣n),
∵C落在抛物线上,
∴﹣m2+4m+12=﹣n,即m2﹣4m﹣12=n,
解得:﹣m2+4m+12=m2﹣4m﹣12,
解得:m=2或m=﹣2;
②∵点C(﹣m,﹣n)在第四象限,
∴﹣m>0,﹣n<0,即m<0,n>0,
∵抛物线顶点坐标为(﹣2,16),
∴0<n≤16,
∵点B在抛物线上,
∴﹣m2﹣4m+12=n,
∴m2+4m=﹣n+12,
∵A(2,0),C(﹣m,﹣n),
∴AC2=(﹣m﹣2)2+(﹣n)2=m2+4m+4+n2=n2﹣n+16=(n﹣)2+,
当n=时,AC2有最小值,
∴﹣m2﹣4m+12=,
解得:m=,
∵m<0,∴m=不合题意,舍去,
则m的值为.
【题目】张老师元旦节期间到武商众圆商场购买一台某品牌笔记本电脑,恰逢商场正推出“迎元旦”促销打折活动,具体优惠情况如表:
购物总金额(原价) | 折扣 |
不超过5000元的部分 | 九折 |
超过5000元且不超过10000元的部分 | 八折 |
超过10000元且不超过20000元的部分 | 七折 |
…… | …… |
例如:若购买的商品原价为15000元,实际付款金额为:
5000×90%+(10000﹣5000)×80%+(15000﹣10000)×70%=12000元.
(1)若这种品牌电脑的原价为8000元/台,请求出张老师实际付款金额;
(2)已知张老师购买一台该品牌电脑实际付费5700元.
①求该品牌电脑的原价是多少元/台?
②若售出这台电脑商场仍可获利14%,求这种品牌电脑的进价为多少元/台?