题目内容
【题目】二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法: ①2a+b=0;②当-1≤x≤3时,y<0;③若(x1 , y1)、(x2 , y2)在函数图象上,当x1<x2时,y1<y2;④9a+3b+c=0,其中正确的是( )
A. ①②③ B. ①②④ C. ①④ D. ②③④
【答案】C
【解析】
由抛物线与x轴的交点求得对称轴x=1,判断①;根据图象判断-1<x<3时,y的符号判断②;根据二次函数的性质即可判断③,由x=3时,y=0,判断②
解:∵抛物线与x轴的交点为(-1,0),(3,0),
∴对称轴x═1,
∴-=1,
∴2a+b=0,故①正确;
由图可知,当-1<x<3时,y<0,故②错误;
∵抛物线开口向上,对称轴x=1,根据抛物线的性质在对称轴右侧y随x的增大而增大,在对称轴的左侧,y随x的增大而减小,
∴当x1<x2时,无法判断y1,y2的大小,故③错误.
∵当x=3时,y=0,
∴9a+3b+c=0,故④正确;
故选:B.
练习册系列答案
相关题目