ÌâÄ¿ÄÚÈÝ
Èçͼ£¬Rt¡÷AOBµÄÁ½Ö±½Ç±ßOB¡¢OA·Ö±ðλÓÚxÖá¡¢yÖáÉÏ£¬OA=6£¬OB=8£®
£¨1£©Èçͼ1£¬½«¡÷AOBÕÛµþ£¬µãBÇ¡ºÃÂäÔÚµãO´¦£¬ÕÛºÛΪCD1£¬Çó³öD1µÄ×ø±ê£»
£¨2£©Èçͼ2£¬½«¡÷AOBÕÛµþ£¬µãOÇ¡ºÃÂäÔÚAB±ßÉϵĵãC´¦£¬ÕÛºÛΪAD2£¬Çó³öD2µÄ×ø±ê£»
£¨3£©Èçͼ3£¬½«¡÷AOBÕÛµþ£¬µãOÂäÔÚ¡÷AOBÄڵĵãC´¦£¬OD3=2£¬ÕÛºÛΪAD3£¬AD3ÓëOC½»ÓÚµãE£¬Çó³öµãCµÄºá×ø±ê£®
£¨1£©Èçͼ1£¬½«¡÷AOBÕÛµþ£¬µãBÇ¡ºÃÂäÔÚµãO´¦£¬ÕÛºÛΪCD1£¬Çó³öD1µÄ×ø±ê£»
£¨2£©Èçͼ2£¬½«¡÷AOBÕÛµþ£¬µãOÇ¡ºÃÂäÔÚAB±ßÉϵĵãC´¦£¬ÕÛºÛΪAD2£¬Çó³öD2µÄ×ø±ê£»
£¨3£©Èçͼ3£¬½«¡÷AOBÕÛµþ£¬µãOÂäÔÚ¡÷AOBÄڵĵãC´¦£¬OD3=2£¬ÕÛºÛΪAD3£¬AD3ÓëOC½»ÓÚµãE£¬Çó³öµãCµÄºá×ø±ê£®
·ÖÎö£º£¨1£©¸ù¾ÝÕÛµþµÄÐÔÖʿɵÃOD1=BD1£¬È»ºóÇó³öOD1£¬ÔÙд³öµãD1µÄ×ø±ê¼´¿É£»
£¨2£©ÀûÓù´¹É¶¨ÀíÁÐʽÇó³öAB£¬ÔÙ¸ù¾ÝÕÛµþµÄÐÔÖʿɵÃAC=OA£¬OD2=CD2£¬È»ºó±íʾ³öBC£¬ÉèOD2=x£¬±íʾ³öBD2£¬ÔÚRt¡÷BCD2ÖУ¬ÀûÓù´¹É¶¨ÀíÁгö·½³ÌÇó³öx£¬ÔÙд³öµãD1µÄ×ø±ê£»
£¨3£©ÔÚRt¡÷AOD3ÖУ¬ÀûÓù´¹É¶¨ÀíÁÐʽÇó³öAD3£¬¸ù¾Ý·ÕÛµÄÐÔÖʿɵÃOE¡ÍAD3ÇÒOC=2OE£¬È»ºóÀûÓÃÈý½ÇÐεÄÃæ»ýÇó³öOEµÄ³¤£¬´Ó¶øµÃµ½OCµÄ³¤£¬¹ýµãC×÷CF¡ÍxÖáÓÚF£¬È»ºóÇó³ö¡÷AOD3ºÍ¡÷OFCÏàËÆ£¬¸ù¾ÝÏàËÆÈý½ÇÐζÔÓ¦±ß³É±ÈÀýÁÐʽÇó³öOF¡¢CF£¬ÔÙ¸ù¾ÝµãCÔÚµÚÒ»ÏóÏÞд³ö×ø±ê¼´¿É£®
£¨2£©ÀûÓù´¹É¶¨ÀíÁÐʽÇó³öAB£¬ÔÙ¸ù¾ÝÕÛµþµÄÐÔÖʿɵÃAC=OA£¬OD2=CD2£¬È»ºó±íʾ³öBC£¬ÉèOD2=x£¬±íʾ³öBD2£¬ÔÚRt¡÷BCD2ÖУ¬ÀûÓù´¹É¶¨ÀíÁгö·½³ÌÇó³öx£¬ÔÙд³öµãD1µÄ×ø±ê£»
£¨3£©ÔÚRt¡÷AOD3ÖУ¬ÀûÓù´¹É¶¨ÀíÁÐʽÇó³öAD3£¬¸ù¾Ý·ÕÛµÄÐÔÖʿɵÃOE¡ÍAD3ÇÒOC=2OE£¬È»ºóÀûÓÃÈý½ÇÐεÄÃæ»ýÇó³öOEµÄ³¤£¬´Ó¶øµÃµ½OCµÄ³¤£¬¹ýµãC×÷CF¡ÍxÖáÓÚF£¬È»ºóÇó³ö¡÷AOD3ºÍ¡÷OFCÏàËÆ£¬¸ù¾ÝÏàËÆÈý½ÇÐζÔÓ¦±ß³É±ÈÀýÁÐʽÇó³öOF¡¢CF£¬ÔÙ¸ù¾ÝµãCÔÚµÚÒ»ÏóÏÞд³ö×ø±ê¼´¿É£®
½â´ð£º½â£º£¨1£©ÓÉÕÛµþµÄÐÔÖʵã¬OD1=BD1£¬
ËùÒÔ£¬OD1=
OB=
¡Á8=4£¬
ËùÒÔµãD1£¨4£¬0£©£»
£¨2£©¡ßOA=6£¬OB=8£¬
¡àAB=
=
=10£¬
ÓÉÕÛµþµÄÐÔÖʵã¬AC=OA=6£¬OD2=CD2£¬
¡àBC=AB-AC=10-6=4£¬
ÉèOD2=x£¬ÔòBD2=8-x£¬
ÔÚRt¡÷BCD2ÖУ¬CD22+BC2=BD22£¬
¼´x2+42=£¨8-x£©2£¬
½âµÃx=3£¬
¡àµãD2µÄ×ø±êΪ£¨3£¬0£©£»
£¨3£©ÔÚRt¡÷AOD3ÖУ¬AD3=
=
=2
£¬
ÓÉ·ÕÛµÄÐÔÖʵã¬OE¡ÍAD3ÇÒOC=2OE£¬
S¡÷AOD3=
AD3•OE=
OA•OD3£¬
¡à
¡Á2
OE=
¡Á6¡Á2£¬
½âµÃOE=
£¬
¡àOC=2¡Á
=
£¬
¹ýµãC×÷CF¡ÍxÖáÓÚF£¬
¡ß¡ÏCOF+¡ÏAD3O=180¡ã-90¡ã=90¡ã£¬
¡ÏAD3O+¡ÏOAD3=90¡ã£¬
¡à¡ÏOAD3=¡ÏCOF£¬
ÓÖ¡ß¡ÏAOD3=¡ÏOFC=90¡ã£¬
¡à¡÷AOD3¡×¡÷OFC£¬
¡à
=
=
£¬
¼´
=
=
=
£¬
½âµÃOF=
£¬CF=
£¬
ËùÒÔ£¬µãCµÄ×ø±êΪ£¨
£¬
£©£®
ËùÒÔ£¬OD1=
1 |
2 |
1 |
2 |
ËùÒÔµãD1£¨4£¬0£©£»
£¨2£©¡ßOA=6£¬OB=8£¬
¡àAB=
OA2+OB2 |
62+82 |
ÓÉÕÛµþµÄÐÔÖʵã¬AC=OA=6£¬OD2=CD2£¬
¡àBC=AB-AC=10-6=4£¬
ÉèOD2=x£¬ÔòBD2=8-x£¬
ÔÚRt¡÷BCD2ÖУ¬CD22+BC2=BD22£¬
¼´x2+42=£¨8-x£©2£¬
½âµÃx=3£¬
¡àµãD2µÄ×ø±êΪ£¨3£¬0£©£»
£¨3£©ÔÚRt¡÷AOD3ÖУ¬AD3=
OA2+OD32 |
62+22 |
10 |
ÓÉ·ÕÛµÄÐÔÖʵã¬OE¡ÍAD3ÇÒOC=2OE£¬
S¡÷AOD3=
1 |
2 |
1 |
2 |
¡à
1 |
2 |
10 |
1 |
2 |
½âµÃOE=
3
| ||
5 |
¡àOC=2¡Á
3
| ||
5 |
6
| ||
5 |
¹ýµãC×÷CF¡ÍxÖáÓÚF£¬
¡ß¡ÏCOF+¡ÏAD3O=180¡ã-90¡ã=90¡ã£¬
¡ÏAD3O+¡ÏOAD3=90¡ã£¬
¡à¡ÏOAD3=¡ÏCOF£¬
ÓÖ¡ß¡ÏAOD3=¡ÏOFC=90¡ã£¬
¡à¡÷AOD3¡×¡÷OFC£¬
¡à
OF |
OA |
CF |
OD3 |
OC |
AD3 |
¼´
OF |
6 |
CF |
2 |
| ||||
2
|
3 |
5 |
½âµÃOF=
18 |
5 |
6 |
5 |
ËùÒÔ£¬µãCµÄ×ø±êΪ£¨
18 |
5 |
6 |
5 |
µãÆÀ£º±¾Ì⿼²éÁË·Õ۱任µÄÐÔÖÊ£¬×ø±êÓëͼÐÎÐÔÖÊ£¬Ö÷ÒªÀûÓÃÁ˹´¹É¶¨Àí£¬ÏàËÆÈý½ÇÐεÄÅж¨ÓëÐÔÖÊ£¬´ËÀàÌâÄ¿£¬Êì¼Ç¸÷ÐÔÖʲ¢¸ù¾Ý¹´¹É¶¨ÀíÁгö·½³ÌÊǽâÌâµÄ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿