题目内容

【题目】如图,AB是⊙O的直径,PA是⊙O的切线,点C在⊙O上,CBPO

1)判断PC与⊙O的位置关系,并说明理由;

2)若AB=6CB=4,求PC的长.

【答案】(1)PC是⊙O的切线,理由见解析;(2)

【解析】试题分析:(1)要证PC是⊙O的切线,只要连接OC,再证∠PCO=90°即可.
(2)可以连接AC,根据已知先证明△ACB∽△PCO,再根据勾股定理和相似三角形的性质求出PC的长.

试题解析:(1)结论:PC是⊙O的切线.

证明:连接OC

∵CB∥PO

∴∠POA=∠B,∠POC=∠OCB

∵OC=OB

∴∠OCB=∠B

∴∠POA=∠POC

又∵OA=OC,OP=OP

∴△APO≌△CPO

∴∠OAP=∠OCP

∵PA是⊙O的切线

∴∠OAP=90°

∴∠OCP=90°

∴PC是⊙O的切线.

(2)连接AC

∵AB是⊙O的直径

∴∠ACB=90°(6分)

由(1)知∠PCO=90°,∠B=∠OCB=∠POC

∵∠ACB=∠PCO

∴△ACB∽△PCO

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网