题目内容

【题目】如图(1),等腰直角三角形ABC的底边AB=4,点D在线段AC上,DE⊥AB于E,现将△ADE沿DE折起到△PDE的位置(如图(2)).
(Ⅰ)求证:PB⊥DE;
(Ⅱ)若PE⊥BE,直线PD与平面PBC所成的角为30°,求PE长.

【答案】解:(Ⅰ)∵DE⊥AB,∴DE⊥BE,DE⊥PE, ∵BE∩PE=E,∴DE⊥平面PEB,
又∵PB平面PEB,∴BP⊥DE;
(Ⅱ)∵PE⊥BE,PE⊥DE,DE⊥BE,
∴分别以DE、BE、PE所在直线为x轴、y轴、z轴建立空间直角坐标系(如图)

设PE=a,则B(0,4﹣a,0),D(a,0,0),C(2,2﹣a,0),
P(0,0,a),
可得
设面PBC的法向量
令y=1,可得x=1,z=
因此 是面PBC的一个法向量,
,PD与平面PBC所成角为30°,
,即
解之得:a= ,或a=4(舍),因此可得PE的长为
【解析】(I)根据翻折后DE仍然与BE、PE垂直,结合线面垂直的判定定理可得DE⊥平面PEB,再由线面垂直的性质可得PB⊥DE;(II)分别以DE、BE、PE所在直线为x轴、y轴、z轴,建立如图所示空间直角坐标系.设PE=a,可得点B、D、C、P关于a的坐标形式,从而得到向量 坐标,利用垂直向量数量积为0的方法建立方程组,解出平面PCD的一个法向量为 =(1,1, ),由PD与平面PBC所成的角为30°和向量 的坐标,建立关于参数a的方程,解之即可得到线段PE的长.
【考点精析】利用直线与平面垂直的判定和空间角的异面直线所成的角对题目进行判断即可得到答案,需要熟知一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直;注意点:a)定理中的“两条相交直线”这一条件不可忽视;b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想;已知为两异面直线,A,C与B,D分别是上的任意两点,所成的角为,则

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网