题目内容

【题目】如图,矩形ABCD的对角线AC、BD相交于点O,DE∥AC,CE∥BD.
(1)求证:四边形OCED为菱形;
(2)连接AE、BE,AE与BE相等吗?请说明理由.

【答案】
(1)证明:∵DE∥AC,CE∥BD,

∴四边形DOCE是平行四边形,

∵矩形ABCD的对角线AC、BD相交于点O,

∴OC= AC= BD=OD,

∴四边形OCED为菱形;


(2)解:AE=BE.

理由:∵四边形OCED为菱形,

∴ED=CE,∴∠EDC=∠ECD,

∴∠ADE=∠BCE,

在△ADE和△BCE中,

∴△ADE≌△BCE(SAS),

∴AE=BE.


【解析】(1)首先利用平行四边形的判定得出四边形DOCE是平行四边形,进而利用矩形的性质得出DO=CO,即可得出答案;(2)利用等腰三角形的性质以及矩形的性质得出AD=BC,∠ADE=∠BCE,进而利用全等三角形的判定得出.
【考点精析】通过灵活运用菱形的判定方法和矩形的性质,掌握任意一个四边形,四边相等成菱形;四边形的对角线,垂直互分是菱形.已知平行四边形,邻边相等叫菱形;两对角线若垂直,顺理成章为菱形;矩形的四个角都是直角,矩形的对角线相等即可以解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网