题目内容
(2012•广州)如图,在平行四边形ABCD中,AB=5,BC=10,F为AD的中点,CE⊥AB于E,设∠ABC=α(60°≤α<90°).
(1)当α=60°时,求CE的长;
(2)当60°<α<90°时,
①是否存在正整数k,使得∠EFD=k∠AEF?若存在,求出k的值;若不存在,请说明理由.
②连接CF,当CE2-CF2取最大值时,求tan∠DCF的值.
(1)当α=60°时,求CE的长;
(2)当60°<α<90°时,
①是否存在正整数k,使得∠EFD=k∠AEF?若存在,求出k的值;若不存在,请说明理由.
②连接CF,当CE2-CF2取最大值时,求tan∠DCF的值.
分析:(1)利用60°角的正弦值列式计算即可得解;
(2)①连接CF并延长交BA的延长线于点G,利用“角边角”证明△AFG和△DFC全等,根据全等三角形对应边相等可得CF=GF,AG=CD,再利用直角三角形斜边上的中线等于斜边的一半可得EF=GF,再根据AB、BC的长度可得AG=AF,然后利用等边对等角的性质可得∠AEF=∠G=∠AFG,根据三角形的一个外角等于与它不相邻的两个内角的和可得∠EFC=2∠G,然后推出∠EFD=3∠AEF,从而得解;
②设BE=x,在Rt△BCE中,利用勾股定理表示出CE2,表示出EG的长度,在Rt△CEG中,利用勾股定理表示出CG2,从而得到CF2,然后相减并整理,再根据二次函数的最值问题解答.
(2)①连接CF并延长交BA的延长线于点G,利用“角边角”证明△AFG和△DFC全等,根据全等三角形对应边相等可得CF=GF,AG=CD,再利用直角三角形斜边上的中线等于斜边的一半可得EF=GF,再根据AB、BC的长度可得AG=AF,然后利用等边对等角的性质可得∠AEF=∠G=∠AFG,根据三角形的一个外角等于与它不相邻的两个内角的和可得∠EFC=2∠G,然后推出∠EFD=3∠AEF,从而得解;
②设BE=x,在Rt△BCE中,利用勾股定理表示出CE2,表示出EG的长度,在Rt△CEG中,利用勾股定理表示出CG2,从而得到CF2,然后相减并整理,再根据二次函数的最值问题解答.
解答:解:(1)∵α=60°,BC=10,
∴sinα=
,
即sin60°=
=
,
解得CE=5
;
(2)①存在k=3,使得∠EFD=k∠AEF.
理由如下:连接CF并延长交BA的延长线于点G,
∵F为AD的中点,
∴AF=FD,
在平行四边形ABCD中,AB∥CD,
∴∠G=∠DCF,
在△AFG和△DFC中,
,
∴△AFG≌△DFC(AAS),
∴CF=GF,AG=CD,
∵CE⊥AB,
∴EF=GF(直角三角形斜边上的中线等于斜边的一半),
∴∠AEF=∠G,
∵AB=5,BC=10,点F是AD的中点,
∴AG=5,AF=
AD=
BC=5,
∴AG=AF,
∴∠AFG=∠G,
在△EFG中,∠EFC=∠AEF+∠G=2∠AEF,
又∵∠CFD=∠AFG(对顶角相等),
∴∠CFD=∠AEF,
∴∠EFD=∠EFC+∠CFD=2∠AEF+∠AEF=3∠AEF,
因此,存在正整数k=3,使得∠EFD=3∠AEF;
②设BE=x,∵AG=CD=AB=5,
∴EG=AE+AG=5-x+5=10-x,
在Rt△BCE中,CE2=BC2-BE2=100-x2,
在Rt△CEG中,CG2=EG2+CE2=(10-x)2+100-x2=200-20x,
∵由①知CF=GF,
∴CF2=(
CG)2=
CG2=
(200-20x)=50-5x,
∴CE2-CF2=100-x2-50+5x=-x2+5x+50=-(x-
)2+50+
,
∴当x=
,即点E是AB的中点时,CE2-CF2取最大值,
此时,EG=10-x=10-
=
,
CE=
=
=
,
所以,tan∠DCF=tan∠G=
=
=
.
∴sinα=
CE |
BC |
即sin60°=
CE |
10 |
| ||
2 |
解得CE=5
3 |
(2)①存在k=3,使得∠EFD=k∠AEF.
理由如下:连接CF并延长交BA的延长线于点G,
∵F为AD的中点,
∴AF=FD,
在平行四边形ABCD中,AB∥CD,
∴∠G=∠DCF,
在△AFG和△DFC中,
|
∴△AFG≌△DFC(AAS),
∴CF=GF,AG=CD,
∵CE⊥AB,
∴EF=GF(直角三角形斜边上的中线等于斜边的一半),
∴∠AEF=∠G,
∵AB=5,BC=10,点F是AD的中点,
∴AG=5,AF=
1 |
2 |
1 |
2 |
∴AG=AF,
∴∠AFG=∠G,
在△EFG中,∠EFC=∠AEF+∠G=2∠AEF,
又∵∠CFD=∠AFG(对顶角相等),
∴∠CFD=∠AEF,
∴∠EFD=∠EFC+∠CFD=2∠AEF+∠AEF=3∠AEF,
因此,存在正整数k=3,使得∠EFD=3∠AEF;
②设BE=x,∵AG=CD=AB=5,
∴EG=AE+AG=5-x+5=10-x,
在Rt△BCE中,CE2=BC2-BE2=100-x2,
在Rt△CEG中,CG2=EG2+CE2=(10-x)2+100-x2=200-20x,
∵由①知CF=GF,
∴CF2=(
1 |
2 |
1 |
4 |
1 |
4 |
∴CE2-CF2=100-x2-50+5x=-x2+5x+50=-(x-
5 |
2 |
25 |
4 |
∴当x=
5 |
2 |
此时,EG=10-x=10-
5 |
2 |
15 |
2 |
CE=
100-x2 |
100-
|
5
| ||
2 |
所以,tan∠DCF=tan∠G=
CE |
EG |
| ||||
|
| ||
3 |
点评:本题考查了平行四边形的性质,全等三角形的判定与性质,直角三角形斜边上的中线等于斜边的一半的性质,勾股定理的应用,二次函数的最值问题,作出辅助线构造出全等三角形是解题的关键,另外根据数据的计算求出相等的边长也很重要.
练习册系列答案
相关题目