题目内容
![](http://thumb.zyjl.cn/pic3/upload/images/201201/74/7574e234.png)
y=-
108 |
25x |
y=-
.108 |
25x |
分析:首先过E作EF⊥CO,根据B点坐标可得到AO=CB=3,CO=AB=4,再利用勾股定理算出BO的长,然后求出sinα,再根据本折叠的性质可知EO=AO=3,利用三角函数计算出EF的长,再次利用勾股定理计算出FO的长度,进而得到E点坐标,设出反比例函数关系式,利用待定系数法即可求出答案.
解答:
解:过E作EF⊥CO,
∵B(-4,3),
∴AO=CB=3,CO=AB=4,
OB=
=5,
sinα=
=
,
∴EF=EO•sinα,
由折叠可得:EO=AO=3,
∴EF=3×
=
,
∴FO=
=
,
∴E(-
,
),
设反比例函数解析式为y=
(k≠0),
则k=-
×
=-
,
故反比例函数解析式为;y=-
,
故答案为:y=-
.
![](http://thumb.zyjl.cn/pic3/upload/images/201206/32/55a9f763.png)
∵B(-4,3),
∴AO=CB=3,CO=AB=4,
OB=
CO2+CB2 |
sinα=
CB |
BO |
3 |
5 |
∴EF=EO•sinα,
由折叠可得:EO=AO=3,
∴EF=3×
3 |
5 |
9 |
5 |
∴FO=
EO2-EF2 |
12 |
5 |
∴E(-
12 |
5 |
9 |
5 |
设反比例函数解析式为y=
k |
x |
则k=-
12 |
5 |
9 |
5 |
108 |
25 |
故反比例函数解析式为;y=-
108 |
25x |
故答案为:y=-
108 |
25x |
点评:此题主要考查了利用待定系数法求反比例函数关系式,折叠的性质,勾股定理,三角函数的应用,解决问题的关键是利用三角函数与勾股定理求出E点坐标.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目
![精英家教网](http://thumb.zyjl.cn/pic3/upload/images/201111/45/8f90bf02.png)
20 |
3 |
A、y=
| ||
B、y=
| ||
C、y=-
| ||
D、y=-
|