题目内容
【题目】已知:△ABC与△ABD中,∠CAB=∠DBA=β,且∠ADB+∠ACB=180°.
提出问题:如图1,当∠ADB=∠ACB=90°时,求证:AD=BC;
类比探究:如图2,当∠ADB≠∠ACB时,AD=BC是否还成立?并说明理由.
综合运用:如图3,当β=18°,BC=1,且AB⊥BC时,求AC的长.
【答案】(1)见解析;(2)仍然成立,理由见解析;(3)+1
【解析】
(1)证明△DBA≌△CAB即可;
(2)作∠BEC=∠BCE,BE交AC于E,证明△DBA≌△EAB即可;
(3)作∠BEC=∠BCE,BE交AC于E,由(2)得,AD=BC=BE=1,通过角之间的关系可求得EF=BE=1,再证△CBE∽△CFB,根据相似三角形的对应边成比例求解即可.
(1)在△BDA和△CAB中
∴△DBA≌△CAB(AAS);
(2)结论仍然成立.
理由:作∠BEC=∠BCE,BE交AC于E.
∵∠ADB+∠ACB=∠AEB+∠BEC=180°
∴∠ADB=∠AEB.
又∠CAB=∠DBA,AB=BA
∴△DBA≌△EAB(AAS),
∴BE=AD,
∵∠BEC=∠BCE,
∴BC=BE,
∴AD=BC.
(3)作∠BEC=∠BCE,BE交AC于E,
由(2)得,AD=BC=BE=1
在Rt△ACB中,∠CAB=18°
∴∠C=72°,∠BEC=∠C= 72°
由∠CFB=∠CAB+∠DBA=36°
∴∠EBF=∠CEB-∠CFB=36°
∴EF=BE=1
在△BCF中,∠FBC=180°-∠BFC-∠C=72°
∴∠FBC=∠BEC,∠C=∠C
∴△CBE∽△CFB
∴=
令CE=x,∴1=x(x+1)
解之,x=
∴CF=
由∠FBC=∠BEC
∴BF=CF.又AF=BF
∴AC=2CF=+1
练习册系列答案
相关题目