题目内容
【题目】如图,矩形ABCD中,AB=6,BC=8,点E是射线CB上的一个动点,把△DCE沿DE折叠,点C的对应点为C′.
(1)若点C′刚好落在对角线BD上时,BC′=;
(2)若点C′刚好落在线段AB的垂直平分线上时,求CE的长;
(3)若点C′刚好落在线段AD的垂直平分线上时,求CE的长.
【答案】
(1)4
(2)
解:如图2,连接CC′,
∵点C′在AB的垂直平分线上,
∴点C′在DC的垂直平分线上,
∴CC′=DC′=DC,则△DC′C是等边三角形,
设CE=x,易得DE=2x,
由勾股定理得:(2x)2﹣x2=62,
解得:x=2 ,
即CE的长为2 ;
(3)
解:作AD的垂直平分线,交AD于点M,交BC于点N,分两种情况讨论:
①当点C′在矩形内部时,如图3,
∵点C′在AD的垂直平分线上,
∴DM=4,
∵DC′=6,
由勾股定理得:MC′=2 ,∴NC′=6﹣2 ,
设EC=y,则C′E=y,NE=4﹣y,
故NC′2+NE2=C′E2,
即(6﹣2)2+(4﹣y)2=y2,
解得:y=9﹣3 ,即CE=9﹣3 ;
②当点C′在矩形外部时,如图4,
∵点C′在AD的垂直平分线上,
∴DM=4,
∵DC′=6,
由勾股定理得:MC′=2 ,∴NC′=6+2 ,
设EC=z,则C′E=a,NE=z﹣4
故NC′2+NE2=C′E2,
即(6+2 )2+(z﹣4)2=z2,解得:z=9+3 ,即CE=9+3 ,综上所述:CE的长为9±3 .
【解析】解:如图1,
∵点B,C′,D在同一直线上,
∴BC′=BD﹣DC′=BD﹣DC=10﹣6=4;
故答案为:4;
(1)根据点B,C′,D在同一直线上得出BC′=BD﹣DC′=BD﹣DC求出即可;(2)利用垂直平分线的性质得出CC′=DC′=DC,则△DC′C是等边三角形,进而利用勾股定理得出答案;(3)利用①当点C′在矩形内部时,②当点C′在矩形外部时,分别求出即可.