题目内容

(1997•浙江)如图,矩形ABCD中,AB=3,BC=4,线段EF在对角线AC上,EG⊥AD,FH⊥BC,垂足分别是G,H,且EG+FH=EF.
(1)求线段EF的长;
(2)设EG=x,△AGE与△CFH的面积和为S,写出S关于x的函数关系式及自变量x的取值范围,并求出S的最小值.
分析:(1)根据EG⊥AD,CD⊥AD,得出△AGE∽△ADC,
AE
AC
=
EG
CD
,求出AC,AE=
5
3
EG,同理可得;CF=
5
3
FH,再根据AE+CF+EF=5,EG+FH=EF,得出
5
3
EF+EF=5,EF=
15
8

(2)根据△AGE∽△ADC,
AG
AD
=
EG
CD
,得出AG=
4
3
EG=
4
3
x,同理可得:CH=
4
3
FH=
4
3
15
8
-x),再根据S=
1
2
4
3
x•x+
1
2
4
3
15
8
-x)2然后进行整理即可求出最大值.
解答:解:(1)∵EG⊥AD,CD⊥AD,
∴EG∥CD,
∴△AGE∽△ADC.
AE
AC
=
EG
CD

∵AD=4,CD=3,
∴AC=
32+42
=5,
∴AE=
5
3
EG,
同理可得;CF=
5
3
FH,
∵AE+CF+EF=5,EG+FH=EF,
5
3
EF+EF=5
EF=
15
8


(2)∵△AGE∽△ADC,
AG
AD
=
EG
CD

∴AG=
4
3
EG=
4
3
x,
同理可得:CH=
4
3
FH=
4
3
15
8
-x)
∴S=
1
2
4
3
x•x+
1
2
4
3
15
8
-x)2=
4
3
x2-
5
2
x+
75
32
(0<x<
15
8
),
S最小值=
4
3
×
75
32
-
25
4
4
3
=
75
64
点评:此题考查了相似三角形的判定与性质,关键是根据相似三角形的判定与性质列出比例式,求出线段的长度.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网