题目内容
【题目】如图1,过原点的抛物线与轴交于另一点,抛物线顶点的坐标为,其对称轴交轴于点.
(1)求抛物线的解析式;
(2)如图2,点为抛物线上位于第一象限内且在对称轴右侧的一个动点,求使面积最大时点的坐标;
(3)在对称轴上是否存在点,使得点关于直线的对称点满足以点、、、为顶点的四边形为菱形.若存在,请求出点的坐标;若不存在,请说明理由.
【答案】(1);(2);(3)点的坐标为或
【解析】
(1)设出抛物线的顶点式,将顶点C的坐标和原点坐标代入即可;
(2)先求出点A的坐标,再利用待定系数法求出AC的解析式,过点作轴交于点,设,则,然后利用“铅垂高,水平宽”即可求出面积与m的关系式,利用二次函数求最值,即可求出此时点D的坐标;
(3)先证出为等边三角形,然后根据P点的位置和菱形的顶点顺序分类讨论:①当点与点重合时,易证:四边形是菱形,即可求出此时点P的坐标;②作点关于轴的对称点,当点与点重合时,易证:四边形是菱形,先求出,再根据锐角三角函数即可求出BP,从而求出此时点P的坐标.
(1)解:设抛物线解析式为,
∵顶点
∴
又∵图象过原点
∴解出:
∴即
(2)令,即,解出:或
∴
设直线AC的解析式为y=kx+b
将点,的坐标代入,可得
解得:
∴
过点作轴交于点,
设,则
∴
∴
∴当时,有最大值
当时,
∴
(3)∵,,
∴
∴
∴为等边三角形
①当点与点重合时,
∴四边形是菱形
∴
②作点关于轴的对称点,当点与点重合时,
∴四边形是菱形
∴点是的角平分线与对称轴的交点,
∴,
∵,.
在Rt△OBP中,
∴
综上所述,点的坐标为或
【题目】坚持农业农村优先发展,按照产业兴旺、生态宜居的总要求,统筹推进农村经济建设.洛宁县某村出售特色水果(苹果).规定如下:
品种 | 购买数量低于50箱 | 购买数量不低于50箱 |
新红星 | 原价销售 | 以八折销售 |
红富士 | 原价销售 | 以九折销售 |
如果购买新红星40箱,红富士60箱,需付款4300元;如果购买新红星100箱,红富士35箱,需付款4950元.
(1)每箱新红星、红富士的单价各多少元?
(2)某单位需要购置这两种苹果120箱,其中红富士的数量不少于新红星的一半,并且不超过60箱,如何购买付款最少?请说明理由.
【题目】有这样一个问题:探究函数y=的图象与性质.小美根据学习函数的经验,对函数y=的图象与性质进行了探究下面是小美的探究过程,请补充完整:
(1)函数y=的自变量x的取值范围是 ;
(2)下表是y与x的几组对应值.
x | -2 | - | -1 | - | 1 | 2 | 3 | 4 | … | ||
y | 0 | - | -1 | - | m | … |
求m的值;
(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;
(4)结合函数的图象,写出该函数的一条性质: .