题目内容
【题目】如图①,在△ABC中,CD、CE分别是△ABC的高和角平分线,∠BAC=α,∠B=β(α>β).
(1)若α=70°,β=40°,求∠DCE的度数;
(2)试用α、β的代数式表示∠DCE的度数(直接写出结果);
(3)如图②,若CE是△ABC外角∠ACF的平分线,交BA延长线于点E,且α﹣β=30°,求∠DCE的度数.
【答案】(1)15°;(2);(3)75°.
【解析】
(1)三角形的内角和是180°,已知∠BAC与∠ABC的度数,则可求出∠BAC的度数,然后根据角平分线的性质求出∠BCE,再利用三角形的一个外角等于和它不相邻的两个内角的和求出∠DEC的度数,进而求出∠DCE的度数;
(2)∠DCE= .
(3)作∠ACB的内角平分线CE′,根据角平分线的性质求出∠ECE′=∠ACE+∠ACE′=∠ACB+∠ACF=90°,进而求出∠DCE的度数.
解:(1)因为∠ACB=180°﹣(∠BAC+∠B)=180°﹣(70°+40°)=70°,
又因为CE是∠ACB的平分线,
所以.
因为CD是高线,
所以∠ADC=90°,
所以∠ACD=90°﹣∠BAC=20°,
所以∠DCE=∠ACE﹣∠ACD=35°﹣20°=15°.
(2).
(3)如图,作∠ACB的内角平分线CE′,
则.
因为CE是∠ACB的外角平分线,
所以∠ECE′=∠ACE+∠ACE′===90°,
所以∠DCE=90°﹣∠DCE′=90°﹣15°=75°.
即∠DCE的度数为75°.
练习册系列答案
相关题目