题目内容
【题目】小明家需要用钢管做防盗窗,按设计要求,其中需要长为 0.8m,2.5m 且粗细相同的钢管分别为 100 根,32 根,并要求这些用料不能是焊接而成的.现钢材市场的这种规格的钢管每根为 6m.
(1)试问一根 6 米长的钢管有哪些裁剪方法呢?请填写下空(余料作废).
方法 1:当只裁剪长为 0.8 米的用料时,最多可剪 根;
方法 2:当先剪下 1 根 2.5 米的用料时,余下部分最多能剪 0.8 米长的用料 根:
方法 3:当先剪下 2 根 2.5 米的用料时,余下部分最多能剪 0.8 米长的用料 根.
(2)联合用(1)中的方法 2 和方法 3 各裁剪多少根 6 米长的钢管,才能刚好得到所需要的相应数量的材料?
(3)小明经过探究发现:如果联合(1)中的二种或三种裁剪方法,还有多种方案能刚好得 到所需要的相应数量的材料,并且所需要 6m 长的钢管与(2)中根数相同,试帮小明说明理由,并写出一种与(2)不同的裁剪方案.
【答案】(1)7,4,1;(2)用方法二剪 24 根,方法三裁剪 4 根 6m 长的钢管;(3)方法一与方法三联合,所需要 6m 长的钢管与(2)中根数相同.
【解析】(1)由总数÷每份数=分数就可以直接得出结论;
(2)设用方法②剪x根,方法③裁剪y根6m长的钢管,就有x+2y=32,4x+y=100,由此方程构成方程组求出其解即可.
(3)设方法①裁剪m根,方法③裁剪n根6m长的钢管和设方法①裁剪a根,方法②裁剪b根6m长的钢管,分别建立方程组求出其解即可.
(1)①6÷0.8=7…0.4,因此当只裁剪长为0.8m的用料时,最多可剪7根;
②(6-2.5)÷0.8=4…0.3,因此当先剪下1根2.5m的用料时,余下部分最多能剪0.8m长的用料4根;
③(6-2.5×2)÷0.8=1…0.2,因此当先剪下2根2.5m的用料时,余下部分最多能剪0.8m长的用料1根;
(2)设用方法②剪x根,方法③裁剪y根6m长的钢管,由题意,得
,
解得:.
答:用方法②剪24根,方法③裁剪4根6m长的钢管;
(3)设方法①裁剪m根,方法③裁剪n根6m长的钢管,由题意,得
,
解得:,
∴m+n=28.
∵x+y=24+4=28,
∴m+n=x+y.
设方法①裁剪a根,方法②裁剪b根6m长的钢管,由题意,得
,
解得:无意义.
∴方法①与方法③联合,所需要6m长的钢管与(2)中根数相同.