题目内容
【题目】综合与实践
阅读以下材料:
定义:两边分别相等且夹角互补的两个三角形叫做“互补三角形”.
用符号语言表示为:如图①,在△ABC与△DEF中,如果AC=DE,∠C+∠E=180°,BC=EF,那么△ABC与△DEF是互补三角形.
反之,“如果△ABC与△DEF是互补三角形,那么有AC=DE,∠C+∠E=180°,BC=EF”也是成立的.
自主探究
利用上面所学知识以及全等三角形的相关知识解决问题:
(1)性质:互补三角形的面积相等
如图②,已知△ABC与△DEF是互补三角形.
求证:△ABC与△DEF的面积相等.
证明:分别作△ABC与△DEF的边BC,EF上的高线,则∠AGC=∠DHE=90°.
…… (将剩余证明过程补充完整)
(2)互补三角形一定不全等,请你判断该说法是否正确,并说明理由,如果不正确,请举出一个反例,画出示意图.
【答案】(1)见解析;(2)不正确,理由见解析
【解析】
(1)已知△ABC与△DEF是互补三角形,可得∠ACB+∠E=180°,AC=DE,BC=EF,证得∠ACG=∠E,证明△AGC≌△DHE,得到AG=DH,所以,即△ABC与△DEF的面积相等.
(2)不正确.先画出反例图,证明△ABC≌△DEF,△ABC与△DEF是互补三角形.互补三角形一定不全等的说法错误.
(1)∵△ABC与△DEF是互补三角形,
∴∠ACB+∠E=180°,AC=DE,BC=EF.
又∵∠ACB+∠ACG=180°,
∴∠ACG=∠E,
在△AGC与△DHE中,
∴△AGC≌△DHE(AAS)
∴AG=DH.
∴
即△ABC与△DEF的面积相等.
(2)不正确.
反例如解图,在△ABC和△DEF中,
∴△ABC≌△DEF(SAS),
∴△ABC与△DEF是互补三角形.
∴互补三角形一定不全等的说法错误.