题目内容

【题目】如图,边长为1的正方形ABCD的对角线AC,BD相交于点O,直角∠MPN的顶点P与点O重合,直角边PM,PN分别与OA,OB重合,然后逆时针旋转∠MPN,旋转角为θ(0°<θ<90°),PM、PN分别交AB、BCE、F两点,连接EFOB于点G,则下列结论中正确的是_____.

(1)EF=OE;(2)S四边形OEBF:S正方形ABCD=1:4;(3)在旋转过程中,当△BEF与△COF的面积之和最大时,AE=;(4)OGBD=AE2+CF2.

【答案】(1)(2)(4)

【解析】

(1)由四边形ABCD是正方形,直角∠MPN,易证得△BOE≌△COF(ASA),则可证得结论;(2)由(1)易证得S四边形OEBF=SBOC=S正方形ABCD,则可证得结论; (3)首先设AE=x,则BE=CF=1﹣x,BF=x,继而表示出△BEF与△COF的面积之和,然后利用二次函数的最值问题,求得答案;(4)易证得△OEG∽△OBE,然后由相似三角形的对应边成比例,证得OGOB=OE2,再利用OBBD的关系,OEEF的关系,即可证得结论.

∵四边形ABCD是正方形,

OB=OC,OBE=OCF=45°,BOC=90°,

∴∠BOF+COF=90°,

∵∠EOF=90°,

∴∠BOF+COE=90°,

∴∠BOE=COF,

在△BOE和△COF中,

∴△BOE≌△COF(ASA),

OE=OF,BE=CF,

EF=OE;故(1)正确;

S四边形OEBF=SBOE+SBOE=SBOE+SCOF=SBOC=S正方形ABCD

S四边形OEBF:S正方形ABCD=1:4;故(2)正确;

过点OOHBC,

BC=1,

OH=BC=

AE=x,则BE=CF=1-x,BF=x,

SBEF+SCOF=BEBF+CFOH=x(1-x)+(1-x)×=-(x-2+

a=-<0,

∴当x=时,SBEF+SCOF最大;

即在旋转过程中,当△BEF与△COF的面积之和最大时,AE=;故(3)错误;

∵∠EOG=BOE,OEG=OBE=45°,

∴△OEG∽△OBE,

OE:OB=OG:OE,

OGOB=OE2

OB=BD,OE=EF,

OGBD=EF2

∵在△BEF中,EF2=BE2+BF2

EF2=AE2+CF2

OGBD=AE2+CF2.故(4)正确,

综上所述:(1)(2)(4)正确,

故答案为:(1)(2)(4)

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网