题目内容

【题目】如图,O的直径AB=12cmCAB延长线上一点,CPO相切于点P,过点B作弦BDCP,连接PD

1)求证:点P的中点;

2)若C=∠D,求四边形BCPD的面积.

【答案】1)证明见解析;(2

【解析】试题分析:(1)连接OP,根据切线的性质得到PC⊥OP,根据平行线的性质得到BD⊥OP,根据垂径定理即可得到结论;

(2)根据圆周角定理得到∠POB=2∠D,根据三角形的内角和得到∠C=30°,推出四边形BCPD是平行四边形,于是得到结论.

试题解析:(1)连接OP,

∵CP与⊙O相切于点P,

∴PC⊥OP,

∵BD∥CP,

∴BD⊥OP,

∴点P为 的中点;

(2)∵∠C=∠D,

∵∠POB=2∠D,

∴∠POB=2∠C,

∵∠CPO=90°,

∴∠C=30°,

∵BD∥CP,

∴∠C=∠DBA,

∴∠D=∠DBA,

∴BC∥PD,

∴四边形BCPD是平行四边形,

∵PO= AB=6,

∴PC=6

∵∠ABD=∠C=30°,

∴OE=OB=3,

∴PE=3,

∴四边形BCPD的面积=PCPE=6×3=18

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网