题目内容
【题目】如图,⊙O的直径AB=12cm,C为AB延长线上一点,CP与⊙O相切于点P,过点B作弦BD∥CP,连接PD.
(1)求证:点P为的中点;
(2)若∠C=∠D,求四边形BCPD的面积.
【答案】(1)证明见解析;(2).
【解析】试题分析:(1)连接OP,根据切线的性质得到PC⊥OP,根据平行线的性质得到BD⊥OP,根据垂径定理即可得到结论;
(2)根据圆周角定理得到∠POB=2∠D,根据三角形的内角和得到∠C=30°,推出四边形BCPD是平行四边形,于是得到结论.
试题解析:(1)连接OP,
∵CP与⊙O相切于点P,
∴PC⊥OP,
∵BD∥CP,
∴BD⊥OP,
∴ ,
∴点P为 的中点;
(2)∵∠C=∠D,
∵∠POB=2∠D,
∴∠POB=2∠C,
∵∠CPO=90°,
∴∠C=30°,
∵BD∥CP,
∴∠C=∠DBA,
∴∠D=∠DBA,
∴BC∥PD,
∴四边形BCPD是平行四边形,
∵PO= AB=6,
∴PC=6,
∵∠ABD=∠C=30°,
∴OE=OB=3,
∴PE=3,
∴四边形BCPD的面积=PCPE=6×3=18.
练习册系列答案
相关题目