题目内容
【题目】如图,点是半圆的半径上的动点,作于.点是半圆上位于左侧的点,连结交线段于,且.
(1) 求证:是⊙O的切线.
(2) 若⊙O的半径为,,设.
①求关于的函数关系式.
②当时,求的值.
【答案】(1)连接DO,根据垂直的定义可得∠3+∠4=90°,由PD=PE,OD=OB可得∠1=∠2,∠5=∠4,又∠2=∠3可得∠1+∠5=90°,即得∠PDO=90°,从而证得结论;(2)①y=x2+144;②
【解析】
试题(1)要证PD是⊙O的切线只要证明∠PDO=90°即可;
(2)①分别用含有x,y的式子,表示OP2和PD2这样便可得到y关于x的函数关系式;
②已知x的值,则可以根据关系式求得PD的值,已PC的值且PD=PE,从而可得到EC,BE的值,这样便可求得tanB的值.
试题解析:(1)证明:连接OD.
∵OB=OD,∴∠OBD=∠ODB.
∵PD=PE,∴∠PDE=∠PED.
∠PDO=∠PDE+∠ODE
=∠PED+∠OBD
=∠BEC+∠OBD
=90°,
∴PD⊥OD.
∴PD是⊙O的切线.
(2)解:①连接OP.
在Rt△POC中,OP2=OC2+PC2=x2+192.
在Rt△PDO中,PD2=OP2-OD2=x2+144.
∴y=x2+144(0≤x≤4).
②当x=时,y=147,
∴PD=7,
∴EC=,
∵CB=3,
∴在Rt△ECB中,tanB=.
练习册系列答案
相关题目