题目内容
【题目】如图,在中, 分别是边上的两个动点( 不与 重合),且保持 ,以 为边,在点 A 的异侧作正方形.
(1)试求的面积;
(2)当边 与 重合时,求正方形的边长;
(3)设 与正方形 重叠部分的面积为,试求关于 的函数关系式,并写出自变量的范围;
(4)当 是等腰三角形时,请直接写出 的长.
【答案】(1)12;(2);(3)当0 <x≤2时,,当2 < x<5时,;(4).
【解析】
(1)作底边上的高,利用勾股定理求出高就可以求出面积.
(2)根据DE∥BC,得到△ADE∽△ABC,再根据相似三角形对应高的比等于相似比即可求出边DE的长度.
(3)可以分为正方形在三角形内部和不全在内部两种情况求解,全在内部时,利用三角形相似得,求出DE,再求重叠部分正方形的面积,不全在内部时先求出长DE,再利用DG∥AH,求出宽.
(4)当△BDG是等腰三角形时,分BD=DG,BD=BG,DG=BG三种情况写出AD的长.
解:(1)过A作,
,
,
(2)令此时正方形的边长为a,如图
∵DE∥BC,
∴
即
,
(3)当DE=时,由△ADE∽△ABC得,解得AD=2,
当0 < x ≤ 2时,正方形全部在三角形内部,由得:,DE=,
∴(0 < x ≤ 2);
当 2 < x < 5 时,如图,DE=,BD=5-x
∵sin∠B=
即
∴DM=,
∴(2 < x < 5);
(4)当△BDG是等腰三角形时,设AD=x,当BD=DG,
此时正方形不全部在三角形内部,
∵BD=5x,
由(3)可知DG=DE=,
∴5x=
解得x=,
∴AD=;
当DB=BG时,BD=5-x,DG=
∵cos∠B=
即
∴BM==3-x
又DM=,
∴MG=DG-DM=-[]=2x-4
∴BG2=BM2+MG2=(3-x)2+(2x-4)2
∵DB=BG
∴BD2=BG2,
即(5-x)2=(3-x)2+(2x-4)2
解得x=(x=0舍去)
∴AD=;
当DG=BG,同理DG2=BG2,
即()2=(3-x)2+(2x-4)2
解得x=(x=5舍去)
∴AD=;
故AD=,,.
【题目】某社区为了进一步提高居民珍惜谁、保护水和水忧患意识,提倡节约用水,从本社区5000户家庭中随机抽取100户,调查他们家庭每季度的平均用水量,并将调查的结果绘制成如下的两幅不完整的统计图和表:
用户季度用水量频数分布表
平均用水量(吨) | 频数 | 频率 |
3<x≤6 | 10 | 0.1 |
6<x≤9 | m | 0.2 |
9<x≤12 | 36 | 0.36 |
12<x≤15 | 25 | n |
15<x≤18 | 9 | 0.09 |
请根据上面的统计图表,解答下列问题:
(1)在频数分布表中:m=_______,n=________;
(2)根据题中数据补全频数直方图;
(3)如果自来水公司将基本季度水量定为每户每季度9吨,不超过基本季度用水量的部分享受基本价格,超出基本季度用水量的部分实行加价收费,那么该社区用户中约有多少户家庭能够全部享受基本价格?