题目内容

【题目】如图,DABCAB边上一点,EAC延长线上的一点,且CE=BD

1)当AB=AC时,求证:DE>BC

2)当AB≠AC时,DEBC有何大小关系?给出结论,画出图形,并证明。

【答案】(1)见解析;(2)见解析

【解析】试题分析:

1如图1过点DDF∥BC,过点CCF∥AB,连接EF,从而可得DF=BC,这样就把分散的线段集中到了△DEF中,只需证DE>DF即可;易证∠1=∠2∠3=∠4∠3>∠5,从而可得∠DFE>∠DEF∴DE>DF,从而得到:DE>BC

2)当ABAC时,我们要分AB>ACAB<AC两种情况来讨论,

其中AB>ACAB=AE时,如图2,结合已知条件此时我们易证△ABC≌△AED,从而得到BC=DE

AB>AC,且AB>AE时,如图3,延长AEF,使AF=AB,在AB上截取AN=AC易证△ABC≌△AFN,得到∠F=∠B再过DDM∥BC,过CCM∥BD得到四边形DBCM是平行四边形,由此可得∠DMC=∠B=∠FDM=BC连接ME,则法通过在△DME中证∠DEM>∠DME得到DM>DE从而得到BC>DE

AB>ACAB<AE时,如图4延长ABF,使AF=AE,在AE上截取AN=AD,连接NF易证△AFN≌△AED,可得∠F=∠AED∠ABC>∠F得到∠ABC>∠AED;再作DM∥BCCM∥AB可得四边形DBCM是平行四边形,得到DM=BC∠DMC=∠ABC,就可得∠DMC>∠AED;连接ME,在△DME中通过证∠DME>∠DEM得到DE>DM,就可得到DE>BC

AB<AC<AE如图5,延长ABF,使AF=AE,在AC上截取AN=AD;过点DDM∥BC,过点CCM∥AB,连接ME;同上可证:DE>BC.

试题解析:

(1)作DF∥BCCF∥BD(如图1),

□BCFD,从而∠DFC∠B

DFBCCFBD

BDCE∴CFCE

∴∠1∠2

∵ABAC∴∠ACB∠B

∠DFE∠DFC∠1∠B∠1

∠ACB∠2∠AED∠2∠DEF

即在△DEF中,∵∠DFE∠DEF

∴DEDF,即DEBC

(2)当AB≠AC时,DEBC的大小关系如下:

ABACABAE时,DEBC

ABACABAE时,DEBC

ABACABAE时,DEBC

ABAC时,DEBC

证明如下:

ABACABAE时(如图2),

∵BDCE∴ABBDAECE,即ADAC

△ABC△AED中,

∵ABAE∠A∠AACAD

∴△ABC≌△AEDSAS),∴BCED

ABACABAE时,

延长AEF使AFAB

AB上截取ANAC(如图3),连结NF

△ABC△AFN中,

∵ABAF∠A∠AACAN

∴△ABC≌△AFNSAS),∴∠B∠F

∵∠AED∠F∴∠AED∠B

D点作DM∥BC过点CCM∥AB连结EM

则四边形DBCM为平行四边形,∴∠DMC∠BCMBDDM=BC

∵BD=CE∴CMCE∴∠CME∠CEM

∵∠DMC∠B∠AED∴∠CME∠DMC∠AED∠CEM

∠DME∠DEM∴DEDM∴DEBC

ABACABAE时,延长ABF,使AFAE

AE上截取ANAD(如图4),连结NF,

△AFN△AED中,

∵AFAE∠A∠AANAD

∴△AFN≌△AEDSAS),

∴∠F∠AED

∵∠ABC∠F

∴∠ABC∠AED

D点作DM∥BC过点CCM∥AB连接EM

则四边形DBCM为平行四边形,

∴∠DMC∠ABCCMBD

∵BDCE

∴CMCE

∴∠CME∠CEM

∵∠DMC∠ABC∠AED

∴∠DMC∠CME∠AED∠CEM

∠DME∠DEM

∴ DEDM

∴ DEBC

ABAC时,此时,AB必小于AE,即ABAE

延长AB到F,使AFAE,在AE上截取ANAD(如图5).

连结NF.在△AFN△AED中,

∵AFAE∠AANAD∴△AFN≌△AEDSAS),

∴∠F∠AED,即∠F∠4∵∠ABC∠F∴∠ABC∠AED

DDM∥BC过点CCM∥AB连结CM

则四边形DBCM平行四边形,∴∠DMC∠ABCCMBDDM=BC

∵BDCE∴CMCE∴∠CME∠CEM∵∠DMC∠ABC∠AED

∴∠DMC∠CDE∠AED∠CEM,即∠DME∠DEM

∴DEDM

∴DEBC.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网