题目内容
【题目】如图,正方形ABCD中,AB=,点E、F分别在BC、CD上,且∠BAE=30°,∠DAF=15度.
(1)求证:DF+BE=EF;
(2)求∠EFC的度数;
(3)求△AEF的面积.
【答案】(1)见解析 (2)30° (3)
【解析】试题分析:
(1)延长EB至点G,使BG=DF,连接AG,由已知条件易证△ABG≌△ADF,再证△FAE≌△GAE,即可得到EF=EG=GB+BE=DF+BE;
(2)由在△ADF中,∠D=90°,∠DAF=15°,可得∠AFD=90°-15°=75°,结合△ABG≌△ADF,△AGE≌△AFE,可得AFE=∠AGE=∠AFD=75°,由此即可得到∠EFC=30°;
(3)在△ABE中由已知条件易得BE=1,CE=,结合△EFC中∠EFC=30°,∠C=90°,可得CF=,由此即可求得△ECF的面积;由△ABG≌△ADF,△FAE≌△GAE,结合由S△AEF=S正方形ABCD-S△ADF-S△AEB-S△CEF,即可得到S△AEF=(S正方形ABCD-S△CEF),由此即可求得△AEF的面积了.
试题解析:
(1)延长EB至G,使BG=DF,连接AG,
∵正方形ABCD,
∴AB=AD,∠ABG=∠ADF=∠BAD=90°,
∵BG=DF,
∴△ABG≌△ADF,
∴AG=AF,
∵∠BAE=30°,∠DAF=15°,
∴∠FAE=∠GAE=45°,
∵AE=AE,
∴△FAE≌△GAE,
∴EF=EG=GB+BE=DF+BE;
(2)∵在△ADF中,∠D=90°,∠DAF=15°,
∴∠AFD=90°-15°=75°,
∵△ABG≌△ADF,△AGE≌△AFE,
∴∠AFE=∠AGE=∠AFD=75°,
∴∠EFC=180°-∠DFA-∠AFE=180°-75°-75°=30°;
(3)∵AB=BC=,∠BAE=30°,
∴BE=1,CE=-1,
∵∠EFC=30°,
∴CF=3-,
∴S△CEF=CECF=2-3,
由(1)知,△ABG≌△ADF,△FAE≌△GAE,
∴S△AEF=S正方形ABCD-S△ADF-S△AEB-S△CEF=S正方形ABCD-S△AEF-S△CEF,
∴S△AEF=(S正方形ABCD-S△CEF)= 3-.
【题目】某完全中学(含初、高中)篮球队12名队员的年龄情况如下:
年龄(单位:岁) | 14 | 15 | 16 | 17 | 18 |
人 数 | 1 | 4 | 3 | 2 | 2 |
(1)这个队队员年龄的众数是 ,中位数是 ;
(2)求这个队队员的平均年龄;
(3)若把这个队队员年龄绘成扇形统计图,请求出年龄为15岁对应的圆心角的度数.