题目内容
【题目】如图,AB是⊙O的直径,点C在⊙O上,CE AB于E, CD平分ECB, 交过点B的射线于D, 交AB于F, 且BC=BD.
(1)求证:BD是⊙O的切线;
(2)若AE=9, CE=12, 求BF的长.
【答案】(1)证明见解析;(2)10.
【解析】
试题分析:(1)要证明BD是⊙O的切线,由已知条件转化为证明∠DBA=90°即可;
(2)连接AC,利用三角形相似求出BE的值,由勾股定理求出BC的值,由已知条件再证明△EFC∽△BFD,相似三角形的性质利用:对应边的比值相等即可求出BF的长.
试题解析:(1)证明:∵CE⊥AB,
∴∠CEB=90°.
∵CD平分∠ECB,BC=BD,
∴∠1=∠2,∠2=∠D.
∴∠1=∠D,
∴CE∥BD,
∴∠DBA=∠CEB=90°,
∵AB是⊙O的直径,
∴BD是⊙O的切线;
(2)解:连接AC,
∵AB是⊙O直径,
∴∠ACB=90°.
∵CE⊥AB,
∴∠AEC=∠BEC=90°,
∵∠A+∠ABC=90°,∠A+∠ACE=90°,
∴∠ACE=∠ABC,
∴△ACE∽△CBE,
∴,即CE2=AEEB,
∵AE=9,CE=12,
∴EB=16,
在Rt△CEB中,∠CEB=90,由勾股定理得 BC=20,
∴BD=BC=20,
∵∠1=∠D,∠EFC=∠BFD,
∴△EFC∽△BFD,
∴,
即
∴BF=10.
练习册系列答案
相关题目