题目内容
【题目】山西绵山是中国历史文化名山,因春秋时期晋国介子推携母隐居于此被焚而著称,如图1,是绵山上介子推母子的塑像,某游客计划测量这座塑像的高度,由于游客无法直接到达塑像底部,因此该游客计划借助坡面高度来测量塑像的高度;如图2,在塑像旁山坡坡脚A处测得塑像头顶C的仰角为75°,当从A处沿坡面行走10米到达P处时,测得塑像头顶C的仰角刚好为45°,已知山坡的坡度i=1:3,且O,A,B在同一直线上,求塑像的高度.(侧倾器高度忽略不计,结果精确到0.1米,参考数据:cos75°≈0.3,tan75°≈3.7, ≈1.4, ≈1.7, ≈3.2)
【答案】解:过点P作PE⊥OB于点E,PF⊥OC于点F,
∵i=1:3,AP=10,
设PE=x,则AE=3x,
在Rt△AEP中,x2+(3x)2=102 ,
解得:x= 或x=﹣ (舍),
∴PE= ,则AE=3 ,
∵∠CPF=∠PCF=45°,
∴CF=PF,
设CF=PF=m米,则OC=(m+ )米,OA=(m﹣3 )米,
在Rt△AOC中,tan75°= = ,即m+ =tan75°(m﹣3 ),
解得:m≈14.3,
∴OC=14.3+ ≈17.5米,
答:塑像的高度约为17.5米
【解析】过点P作PE⊥OB于点E,PF⊥OC于点F,设PE=x,则AE=3x,在Rt△AEP中根据勾股定理可得PE= ,则AE=3 ,设CF=PF=m米,则OC=(m+ )米、OA=(m﹣3 )米,在Rt△AOC中,由tan75°= 求得m的值,继而可得答案.
【考点精析】本题主要考查了关于坡度坡角问题和关于仰角俯角问题的相关知识点,需要掌握坡面的铅直高度h和水平宽度l的比叫做坡度(坡比).用字母i表示,即i=h/l.把坡面与水平面的夹角记作A(叫做坡角),那么i=h/l=tanA;仰角:视线在水平线上方的角;俯角:视线在水平线下方的角才能正确解答此题.