题目内容

【题目】已知当x1=a,x2=b,x3=c时,二次函数y= x2+mx对应的函数值分别为y1 , y2 , y3 , 若正整数a,b,c恰好是一个三角形的三边长,且当a<b<c时,都有y1<y2<y3 , 则实数m的取值范围是

【答案】m>﹣
【解析】方法一: 解:∵正整数a,b,c恰好是一个三角形的三边长,且a<b<c,
∴a最小是2,
∵y1<y2<y3
∴﹣ <2.5,
解得m>﹣2.5.
方法二:
解:当a<b<c时,都有y1<y2<y3



∵a,b,c恰好是一个三角形的三边长,a<b<c,
∴a+b<b+c,
∴m>﹣ (a+b),
∵a,b,c为正整数,
∴a,b,c的最小值分别为2、3、4,
∴m>﹣ (a+b)≥﹣ (2+3)=﹣
∴m>﹣
故答案为:m>﹣
根据三角形的任意两边之和大于第三边判断出a最小为2,再根据二次函数的增减性和对称性判断出对称轴在2、3之间偏向2,即小于2.5,然后列出不等式求解即可.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网