题目内容
【题目】已知抛物线y=ax2﹣2ax+c(a<0)的图象过点A(3,m).
(1)当a=﹣1,m=0时,求抛物线的顶点坐标_____;
(2)如图,直线l:y=kx+c(k<0)交抛物线于B,C两点,点Q(x,y)是抛物线上点B,C之间的一个动点,作QD⊥x轴交直线l于点D,作QE⊥y轴于点E,连接DE.设∠QED=β,当2≤x≤4时,β恰好满足30°≤β≤60°,a=_____.
【答案】(1,4) ﹣
【解析】
(1)利用待定系数法求得抛物线解析式,然后利用配方法将抛物线解析式转化为顶点式,可以直接得到答案;
(2)将点Q(x,y)代入抛物线解析式得到:y=ax2﹣2ax+c.结合一次函数解析式推知:D(x,kx+c).则由两点间的距离公式知QD=ax2﹣2ax+c﹣(kx+c)=ax2﹣(2a+k)x.在Rt△QED中,由锐角三角函数的定义推知tanβ==ax﹣2a﹣k.所以tanβ随着x的增大而减小.结合已知条件列出方程组,解该方程组即可求得a的值.
(1)当a=﹣1,m=0时,y=﹣x2+2x+c,A点的坐标为(3,0),
∴﹣9+6+c=0.
解得 c=3.
∴抛物线的表达式为y=﹣x2+2x+3.
即y=﹣(x﹣1)2+4.
∴抛物线的顶点坐标为(1,4),
故答案为(1,4).
(2)∵点Q(x,y)在抛物线上,
∴y=ax2﹣2ax+c.
又∵QD⊥x轴交直线 l:y=kx+c(k<0)于点D,
∴D点的坐标为(x,kx+c).
又∵点Q是抛物线上点B,C之间的一个动点,
∴QD=ax2﹣2ax+c﹣(kx+c)=ax2﹣(2a+k)x.
∵QE=x,
∴在Rt△QED中,tanβ==ax﹣2a﹣k.
∴tanβ是关于x的一次函数,
∵a<0,
∴tanβ随着x的增大而减小.
又∵当2≤x≤4时,β恰好满足30°≤β≤60°,且tanβ随着β的增大而增大,
∴当x=2时,β=60°;当x=4时,β=30°.
∴,
解得,
故答案为﹣.
【题目】某工厂的甲、乙两个车间各生产了400个新款产品,为了检验甲、乙两车间生产的同一款新产品的合格情况(尺寸范围在165≤x<180为合格),分别从甲、乙两个车间生产的产品中随机各抽取了20个样品迸行检测,获得了它们的数据(尺寸),并对数据进行了整理、描述和分析.下面给出了部分信息:
a.甲车间产品尺寸的扇形统计图如下(数据分为6组:165≤x<170,170≤x<175,
175≤x<180,180≤x<185,185≤x<190,190≤x≤195):
b.甲车间生产的产品尺寸在175≤x<180这一组的是:
175 176 176 177 177 178 178 179 179
c.甲、乙两车间生产产品尺寸的平均数、中位数、众数如下:
车间 | 平均数 | 中位数 | 众数 |
甲车间 | 178 | m | 183 |
乙车间 | 177 | 182 | 184 |
根据以上信息,回答下列问题:
(1)表中m的值为 ;
(2)此次检测中,甲、乙两车间生产的产品合格率更高的是 (填“甲”或“乙”),理由是 ;
(3)如果假设这个工厂生产的所有产品都参加了检测,那么估计甲车间生产该款新产品中合格产品有 个.