题目内容
【题目】如图,菱形 的边长为 , ,弧 是以点 为圆心、 长为半径的弧,弧 是以点 为圆心、 长为半径的弧,则阴影部分的面积为( )
A.
B.
C.
D.
【答案】B
【解析】连接BD,过点D作DE⊥BC,垂足为E,∵四边形ABCD是菱形,∠A=60°,∴△ABD及△BCD是等边三角形,∴ = BCDE= ×2×2×sin60°=2× = .所以答案是:B.
【考点精析】认真审题,首先需要了解三角形的面积(三角形的面积=1/2×底×高),还要掌握菱形的性质(菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形被两条对角线分成四个全等的直角三角形;菱形的面积等于两条对角线长的积的一半)的相关知识才是答题的关键.
【题目】某工厂为了对新研发的一种产品进行合理定价,将该产品按拟定的价格进行试销,通过对5天的试销情况进行统计,得到如下数据:
单价(元/件) | 25 | 28 | 35 | 40 | 42 |
销量(件) | 50 | 44 | 30 | 20 | 16 |
(1)通过对上面表格中的数据进行分析,发现销量y(件)与单价x(元/件)之间存在一次函数关系,求y关于x的函数关系式(不需要写出函数自变量的取值范围);
(2)预计在今后的销售中,销量与单价仍然存在(1)中的关系,且该产品的成本是20元/件.为使工厂获得最大利润,该产品的单价应定为多少?
【题目】某公司在销售一种产品进价为10元的产品时,每年总支出为10万元(不含进价).经过若干年销售得知,年销售量 (万件)是销售单价 (元)的一次函数,并得到如下部分数据:
销售单价 (元) | 16 | 18[ | 20[ | 22 |
年销售量 (万件) | 5 | 4 | 3 | 2 |
(1)则 关于 的函数关系式是;
(2)写出该公司销售这种产品的年利润 (万元)关于销售单价 (元)的函数关系式;当销售单价 为何值时,年利润最大?
(3)试通过(2)中的函数关系式及其大致图象,帮助该公司确定产品的销售单价范围,使年利润不低于14万元(请直接写出销售单价 的范围).