题目内容

【题目】△ ABC中,AB = AC

(1)如图 1,如果∠BAD = 30°ADBC上的高,AD =AE,则∠EDC =

(2)如图 2,如果∠BAD = 40°ADBC上的高,AD = AE,则∠EDC =

(3)思考:通过以上两题,你发现∠BAD∠EDC之间有什么关系?请用式子表示:

(4)如图 3,如果AD不是BC上的高,AD = AE,是否仍有上述关系?如有,请你写出来,并说明理由

【答案】(1)15°;(2)20°;(3)∠BAD=2∠EDC;(4)成立,理由见解析

【解析】

(1)根据等腰三角形三线合一,可知∠DAE=30°,再根据AD=AE,可求∠ADE的度数,从而可知答案;

(2)同理易知答案;

(3)通过(1)(2)题的结论可知∠BAD=2∠EDC,

(4)由于AD=AE,所以∠ADE=∠AED,根据已知容易证得∠BAD=2∠EDC.

解:(1)∵在△ABC中,AB=AC,AD是BC上的高,

∴∠BAD=∠CAD=30°

∵AD=AE,

∴∠DEC=90°-∠AD =15°;

(2)∵在△ABC中,AB=AC,AD是BC上的高,

∴∠BAD=∠CAD=40°

∵AD=AE,

∴∠DEC=90°-∠ADE=20°;

(3)根据前两问可知:∠BAD=2∠EDC

(4)仍成立,理由如下:

∵AD=AE,

∴∠ADE=∠AED

∵∠BAD+∠B=∠ADC,∠ADC=∠ADE+∠EDC

∴∠ADC=∠AED+∠EDC

∵∠AED=∠EDC+∠C

∴∠ADC=(∠EDC+∠C)+∠EDC=2∠EDC+∠C

又∵AB=AC

∴∠B=∠C

∴∠BAD=2∠EDC

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网