题目内容
【题目】本市新建一座圆形人工湖,为测量该湖的半径,小杰和小丽沿湖边选取A,B,C三根木柱,使得A,B之间的距离与A,C之间的距离相等,并测得BC长为120米,A到BC的距离为4米,如图所示.
(1)请你帮他们求出该湖的半径;
(2)如果在圆周上再另取一点P,建造一座连接B,C,P三点的三角形艺术桥,且△BCP为直角三角形,问:这样的P点可以有几处?如何找到?
【答案】
(1)解:设圆心为点O,连接OB,OA,OA交线段BC于点D,
∵AB=AC,
∴ = ,
∴OA⊥BC,
∴BD=DC= BC=60
∵DA=4米,
在Rt△BDO中,OB2=OD2+BD2,
设OB=x米,
则x2=(x﹣4)2+602,
解得x=452.
∴人工湖的半径为452米
(2)解:这样的P点可以有2处,过点B或点C作BC的垂线交圆于一点,此点即为P点.
【解析】(1)设圆心为点O,连接OB,OA,AB=AC,得出 = ,再根据等弦对等弧,得出点A是弧BC的中点.结合垂径定理的推论,知OA垂直平分弦,设圆的半径,结合垂径定理和勾股定理列出关于半径的方程,即可求得圆的半径;(2)根据垂直的定义即可得到结论.
【考点精析】根据题目的已知条件,利用垂径定理的推论的相关知识可以得到问题的答案,需要掌握推论1:A、平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧B、弦的垂直平分线经过圆心,并且平分弦所对的两条弧C、平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧;推论2 :圆的两条平行弦所夹的弧相等.
【题目】为了解某市市民“绿色出行”方式的情况,某校数学兴趣小组以问卷调查的形式,随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类),并将调查结果绘制成如下不完整的统计图.
种类 | A | B | C | D | E |
出行方式 | 共享单车 | 步行 | 公交车 | 的士 | 私家车 |
根据以上信息,回答下列问题:
(1)参与本次问卷调查的市民共有 人,其中选择B类的人数有 人;
(2)在扇形统计图中,求A类对应扇形圆心角α的度数,并补全条形统计图;
(3)该市约有12万人出行,若将A,B,C这三类出行方式均视为“绿色出行”方式,请估计该市“绿色出行”方式的人数.