题目内容
【题目】快、慢两车分别从相距180千米的甲、乙两地同时出发,沿同一路线匀速行驶,相向而行,快车到达乙地停留一段时间后,按原路原速返回甲地.慢车到达甲地比快车到达甲地早 小时,慢车速度是快车速度的一半,快、慢两车到达甲地后停止行驶,两车距各自出发地的路程y(千米)与所用时间x(小时)的函数图象如图所示,请结合图象信息解答下列问题:
(1)请直接写出快、慢两车的速度;
(2)求快车返回过程中y(千米)与x(小时)的函数关系式;
(3)两车出发后经过多长时间相距90千米的路程?直接写出答案.
【答案】
(1)解:慢车的速度=180÷( ﹣ )=60千米/时,
快车的速度=60×2=120千米/时
(2)解:快车停留的时间: ﹣ ×2= (小时),
+ =2(小时),即C(2,180),
设CD的解析式为:y=kx+b,则
将C(2,180),D( ,0)代入,得
,
解得 ,
∴快车返回过程中y(千米)与x(小时)的函数关系式为y=﹣120x+420(2≤x≤ )
(3)解:相遇之前:120x+60x+90=180,
解得x= ;
相遇之后:120x+60x﹣90=180,
解得x= ;
快车从甲地到乙地需要180÷120= 小时,
快车返回之后:60x=90+120(x﹣ ﹣ )
解得x=
综上所述,两车出发后经过 或 或 小时相距90千米的路程
【解析】(1)根据路程与相应的时间,求得慢车的速度,再根据慢车速度是快车速度的一半,求得快车速度;(2)先求得点C的坐标,再根据点D的坐标,运用待定系数法求得CD的解析式;(3)分三种情况:在两车相遇之前;在两车相遇之后;在快车返回之后,分别求得时间即可.
【题目】为了解某市市民“绿色出行”方式的情况,某校数学兴趣小组以问卷调查的形式,随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类),并将调查结果绘制成如下不完整的统计图.
种类 | A | B | C | D | E |
出行方式 | 共享单车 | 步行 | 公交车 | 的士 | 私家车 |
根据以上信息,回答下列问题:
(1)参与本次问卷调查的市民共有 人,其中选择B类的人数有 人;
(2)在扇形统计图中,求A类对应扇形圆心角α的度数,并补全条形统计图;
(3)该市约有12万人出行,若将A,B,C这三类出行方式均视为“绿色出行”方式,请估计该市“绿色出行”方式的人数.