题目内容
【题目】如图,△AOB是直角三角形,∠AOB=90°,OB=2OA,点A在反比例函数y=的图象上.若点B在反比例函数y=的图象上,则k的值为_____.
【答案】﹣8
【解析】
要求函数的解析式只要求出B点的坐标就可以,过点A,B作AC⊥x轴,BD⊥x轴,分别于C,D.根据条件得到△ACO∽△ODB,得到:=2,然后用待定系数法即可.
过点A,B作AC⊥x轴,BD⊥x轴,分别于C,D.
设点A的坐标是(m,n),则AC=n,OC=m.
∵∠AOB=90°,
∴∠AOC+∠BOD=90°.
∵∠DBO+∠BOD=90°,
∴∠DBO=∠AOC.
∵∠BDO=∠ACO=90°,
∴△BDO∽△OCA.
∴,
∵OB=2OA,
∴BD=2m,OD=2n.
因为点A在反比例函数y=的图象上,
∴mn=2.
∵点B在反比例函数y=的图象上,
∴B点的坐标是(-2n,2m).
∴k=-2n2m=-4mn=-8.
故答案为:-8.
练习册系列答案
相关题目