题目内容

【题目】如图,矩形ABCD中,以对角线BD为一边构造一个矩形BDEF,使得另一边EF过原矩形的顶点C.

(1)设Rt△CBD的面积为S1,Rt△BFC的面积为S2,Rt△DCE的面积为S3,则S1__ __S2+S3;(填“>”“=”或“<”)

(2)写出图中的三对相似三角形,并选择其中一对进行证明.

【答案】△BCD∽△CFB,△BCD∽△DEC,△CFB∽△DEC

【解析】试题分析:(1)根据S1=S矩形BDEF,S2+S3=S矩形BDEF,即可得出答案.
(2)根据矩形的性质,结合图形可得:△BCD∽△CFB∽△DEC,选择一对进行证明即可.

试题解析:

(1) ∵S1=BD×ED,S矩形BDEF=BD×ED,
∴S1=S矩形BDEF
∴S2+S3=S矩形BDEF
∴S1=S2+S3

BCD∽△CFB,BCD∽△DEC,CFB∽△DEC.

(2)△BCD∽△CFB∽△DEC.
证明△BCD∽△DEC;
证明:∵∠EDC+∠BDC=90°,∠CBD+∠BDC=90°,
∴∠EDC=∠CBD,
又∵∠BCD=∠DEC=90°,
∴△BCD∽△DEC.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网