题目内容
【题目】如图,在中,,AD、BD、CD分别平分的外角,内角,外角,以下结论:①;②;③;④,其中正确的结论有__.
【答案】①③④
【解析】
根据角平分线定义得出∠ABC=2∠ABD=2∠DBC,∠EAC=2∠EAD,∠ACF
=2∠DCF,根据三角形的内角和定理得出∠BAC+ABC+∠ACB=180°,根据三角形
外角性质得出∠ACF=∠ABC+∠BAC,∠EAC=∠ABC+∠ACB,根据已知结论逐步推理
即可判断各项
①∵AD平分△ABC的外角∠EAC,
∴∠EAD=∠DAC,
∵∠EAC=∠ACB+∠ABC,且∠ABC=∠ACB,
∴∠EAD=∠ABC,
∴AD∥BC,
故①正确。
②由(1)可知AD∥BC,
∴∠ADB=∠DBC,
∵BD平分∠ABC,
∴∠ABD=∠DBC,
∴∠ABC=2∠ADB,
∵∠ABC=∠ACB,
∴∠ACB=2∠ADB,
故②错误。
③在△ADC中,∠ADC+∠CAD+∠ACD=180°,
∵CD平分△ABC的外角∠ACF,
∴∠ACD=∠DCF
∵AD∥BC,
∴∠ADC=∠DCF,∠ADB=∠DBC,∠CAD=∠ACB
∴∠ACD=∠ADC,∠CAD=∠ACB=∠ABC=2∠ABD,
∴∠ADC+∠CAD+∠ACD=∠ADC+2∠ABD+∠ADC=2∠ADC+2∠ABD=180°,
∴∠ADC+∠ABD=90°
故③正确;
∵BD平分∠ABC,
∴∠ABD=∠DBC,
∵∠ADB=∠DBC,
∴∠ADB=∠DBC,
∵∠DCF=90°- ∠ABC=90°-∠BDC=∠DBC+∠BDC
∵∠ABC=90°-∠BDC=∠DBC+∠BDC,
∴∠BDC=90°-2∠DBC,
∠DBC=45°-∠BDC,④正确
故选:①③④.
【题目】某商场有一种游戏,规则是:在一只装有8个红球和若干个白球(每个球除颜色外都相同)的不透明的箱子中,随机摸出1个球,摸到红球就可获得一瓶饮料.工作人员统计了参加游戏的人数和获得饮料的人数(见下表).
(1)计算并完成表格;
参加游戏的人数 | 200 | 300 | 400 | 500 |
获得饮料的人数 | 39 | 63 | 82 | 99 |
获得饮料的频率 |
(2)估计获得饮料的概率;
(3)请你估计袋中白球的数量.
【题目】某公交车每月的支出费用为4000元,票价为2元/人,设每月有人乘坐该公交车,每月利润为元(利润=收入-支出).
(1)请写出与的关系式 ;
(2)完成表格.
人 | 500 | 1000 | 1500 | 2000 | 2500 | 3000 | … |
元 |
|
|
|
|
|
| … |
(3)观察表中数据,每月乘客量达到 人以上时,该公交车才不会亏损.