题目内容
【题目】已知:抛物线y=﹣mx2+(2m﹣1)x+m2﹣1经过坐标原点,且开口向上
(1)求抛物线的解析式;
(2)结合图象写出,0<x<4时,直接写出y的取值范围 ;
(3)点A是该抛物线上位于x轴下方的一个动点,过A作x轴的平行线交抛物线于另一点D,作AB⊥x轴于点B,DC⊥x轴于点C.当BC=1时,求出矩形ABCD的周长.
【答案】(1)y=x2﹣3x;(2)﹣≤y<4;(3)6.
【解析】
(1)把(0,0)代入抛物线解析式求出m的值,再根据开口方向确定m的值即可.
(2)求出函数最小值以及x=0或4是的y的值,由此即可判断.
(3)由BC=1,B、C关于对称轴对称,推出B(,1,0),C(2,0),由AB⊥x轴,DC⊥x轴,推出A(1,﹣2),D(2,﹣2),求出AB,即可解决问题.
解:(1)∵y=x2+(2m﹣1)x+m2﹣1经过坐标原点,
∴0=0+0+m2﹣1,即m2﹣1=0
解得m=±1.
又∵开口向上,
∴﹣m>0,
∴m<0,
∴m=﹣1,
∴二次函数解析式为y=x2﹣3x.
(2)∵y=x2﹣3x═(x﹣)2﹣,
∴x=时,y最小值为﹣,
x=0时,y=0,
x=4时,y=4,
∴0<x<4时,﹣≤y<4.
故答案为﹣≤y<4.
(3)如图,
∵BC=1,B、C关于对称轴对称,
∴B(1,0),C(2,0),
∵AB⊥x轴,DC⊥x轴,
∴A(1,﹣2),D(2,﹣2),
∴AB=DC=2,BC=AD=1,
∴四边形ABCD的周长为6,
当BC=1时,矩形的周长为6.
练习册系列答案
相关题目
【题目】在二次函数y=-x2+bx+c中,函数y与自变量x的部分对应值如下表:
x | …… | -2 | 0 | 3 | 4 | …… |
y | …… | -7 | m | n | -7 | …… |
则m、n的大小关系为( )
A. m>n B. m<n C. m=n D. 无法确定