题目内容
【题目】小明在学习“锐角三角函数”中发现,用折纸的方法可求出tan22.5°,方法如下:将如图所示的矩形纸片ABCD沿过点B的直线折叠,使点A落在BC上的点E处,还原后,再沿过点E的直线折叠,使点A落在BC上的点F处,这样就可以知道tan22.5°=
【答案】 ﹣1
【解析】解:∵将如图所示的矩形纸片ABCD沿过点B的直线折叠,使点A落在BC上的点E处,∴AB=BE,∠AEB=∠EAB=45°,
∵还原后,再沿过点E的直线折叠,使点A落在BC上的点F处,
∴AE=EF,∠EAF=∠EFA= =22.5°,
设AB=x,
则AE=EF= x,
∴tan∠AFB=tan22.5°= = = ﹣1.
故答案是: ﹣1.
根据翻折变换的性质得出AB=BE,∠AEB=∠EAB=45°,∠AFB=22.5°,进而得出tan∠AFB=tan22.5°= 得出答案即可.
练习册系列答案
相关题目