题目内容
【题目】在Rt△ABC中,∠ACB=90°,∠A=30°,点D是AB的中点,DE⊥BC,垂足为点E,连接CD.
(1)如图1,DE与BC的数量关系是;
(2)如图2,若P是线段CB上一动点(点P不与点B、C重合),连接DP,将线段DP绕点D逆时针旋转60°,得到线段DF,连接BF,请猜想DE、BF、BP三者之间的数量关系,并证明你的结论;
(3)若点P是线段CB延长线上一动点,按照(2)中的作法,请在图3中补全图形,并直接写出DE、BF、BP三者之间的数量关系.
【答案】
(1)DE= BC
(2)解:BF+BP= DE.理由如下:
∵线段DP绕点D逆时针旋转60°,得到线段DF,
∴∠PDF=60°,DP=DF,
而∠CDB=60°,
∴∠CDB﹣∠PDB=∠PDF﹣∠PDB,
∴∠CDP=∠BDF,
在△DCP和△DBF中
,
∴△DCP≌△DBF(SAS),
∴CP=BF,
而CP=BC﹣BP,
∴BF+BP=BC,
∵DE= BC,
∴BC= DE,
∴BF+BP= DE
(3)解:如图,
与(2)一样可证明△DCP≌△DBF,
∴CP=BF,
而CP=BC+BP,
∴BF﹣BP=BC,
∴BF﹣BP= DE
【解析】解:(1)∵∠ACB=90°,∠A=30°,∴∠B=60°,
∵点D是AB的中点,
∴DB=DC,
∴△DCB为等边三角形,
∵DE⊥BC,
∴DE= BC;
故答案为DE= BC.
(1)由∠ACB=90°,∠A=30°得到∠B=60°,根据直角三角形斜边上中线性质得到DB=DC,则可判断△DCB为等边三角形,由于DE⊥BC,DE= BC;(2)根据旋转的性质得到∠PDF=60°,DP=DF,易得∠CDP=∠BDF,则可根据“SAS”可判断△DCP≌△DBF,则CP=BF,利用CP=BC﹣BP,DE= BC可得到BF+BP= DE;(3)与(2)的证明方法一样得到△DCP≌△DBF得到CP=BF,而CP=BC+BP,则BF﹣BP=BC,所以BF﹣BP= DE.
【题目】10袋大米的称重记录如下表所表示(单位:kg),求10袋大米的总质量.
每袋大米的质量(kg) | 47 | 50 | 46 | 51 |
袋数 | 3 | 2 | 1 | 4 |
小明的计算过程:10袋大米的总质量为47×3+50×2+46×1+51×4=······
(1)请你将小明的计算过程补充完整;
(2)若每袋大米的标准质量是50kg,请运用正负数的相关知识求这10袋大米的总质量;
(3)结合(2)中的计算说明,与10袋标准质量的大米相比,这10袋大米总计超过多少千克或不足多少千克?