题目内容

【题目】如图,已知抛物线y=ax2+bx+c(a≠0)经过A(﹣3,0)、B(5,0)、C(0,5)三点,O为坐标原点

(1)求此抛物线的解析式;

(2)若把抛物线y=ax2+bx+c(a≠0)向下平移个单位长度,再向右平移n(n>0)个单位长度得到新抛物线,若新抛物线的顶点M在△ABC内,求n的取值范围;

(3)设点P在y轴上,且满足∠OPA+∠OCA=∠CBA,求CP的长.

【答案】(1)y=﹣x2+x+5;(2)0<n<3;(3)PC的长为7或17.

【解析】

试题分析:(1)根据A、B、C三点的坐标,利用待定系数法可求得抛物线的解析式即可;(2)可先求得抛物线的顶点坐标,再利用坐标平移,可得平移后的坐标为(1+n,1),再由B、C两点的坐标可求得直线BC的解析式,可求得y=1时,对应的x的值,从而可求得n的取值范围;(3)当点P在y轴负半轴上和在y轴正半轴上两种情况,根据这两种情况分别求得PC的长即可.

试题解析:(1)把A、B、C三点的坐标代入函数解析式可得

解得

∴抛物线解析式为y=﹣x2+x+5;

(2)∵y=﹣x2+x+5,

∴抛物线顶点坐标为(1,),

∴当抛物线y=ax2+bx+c(a≠0)向下平移个单位长度,再向右平移n(n>0)个单位长度后,得到的新抛物线的顶点M坐标为(1+n,1),

设直线BC解析式为y=kx+m,把B、C两点坐标代入可得,解得

∴直线BC的解析式为y=﹣x+5,

令y=1,代入可得1=﹣x+5,解得x=4,

∵新抛物线的顶点M在△ABC内,

∴1+n<4,且n>0,解得0<n<3,

即n的取值范围为0<n<3;

(3)当点P在y轴负半轴上时,如图1,过P作PD⊥AC,交AC的延长线于点D,

由题意可知OB=OC=5,

∴∠CBA=45°,

∴∠PAD=∠OPA+∠OCA=∠CBA=45°,

∴AD=PD,

在Rt△OAC中,OA=3,OC=5,可求得AC=

设PD=AD=m,则CD=AC+AD=+m,

∵∠ACO=∠PCD,∠COA=∠PDC,

∴△COA∽△CDP,

,即

得m=,PC=17;

可求得PO=PC﹣OC=17﹣5=12,

如图2,在y轴正半轴上截取OP′=OP=12,连接AP′,

则∠OP′A=∠OPA,

∴∠OP′A+∠OCA=∠OPA+∠OCA=∠CBA,

∴P′也满足题目条件,此时P′C=OP′﹣OC=12﹣5=7,

综上可知PC的长为7或17.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网