题目内容
已知:如图,△ABC是等边三角形,D、E分别是BC、CA上的点,且BD=CE.
(1)求证:AD=BE;(2)求∠AFE的度数.
(1)求证:AD=BE;(2)求∠AFE的度数.
(1)证明:∵△ABC是等边三角形,
∴AB=AC,∠ABC=∠C,
∵在△ABD和△BCE中,
,
∴△ABD≌△BCE,
∴AD=BE;
(2)∵△ABD≌△BCE,
∴∠BAD=∠CBE,
∵∠BDF=180°-∠ADC,∠BEC=180°-∠BEA,
∠ADC=∠BAD+∠ABC,∠BEA=∠CBE+∠C,
∴∠ADC=∠BEA,
∴∠BDF=∠BEC,
∵△ABD≌△BCE
∴∠AFE=∠C=60°.
∴AB=AC,∠ABC=∠C,
∵在△ABD和△BCE中,
|
∴△ABD≌△BCE,
∴AD=BE;
(2)∵△ABD≌△BCE,
∴∠BAD=∠CBE,
∵∠BDF=180°-∠ADC,∠BEC=180°-∠BEA,
∠ADC=∠BAD+∠ABC,∠BEA=∠CBE+∠C,
∴∠ADC=∠BEA,
∴∠BDF=∠BEC,
∵△ABD≌△BCE
∴∠AFE=∠C=60°.
练习册系列答案
相关题目