题目内容

【题目】如图,已知点P在△ABC的边AC上,下列条件中,不能判断△ABP∽△ACB的是(
A.∠ABP=∠C
B.∠APB=∠ABC
C.AB2=AP?AC
D.

【答案】D
【解析】解:A、∵∠A=∠A,∠ABP=∠C, ∴△ABP∽△ACB,故本选项错误;
B、∵∠A=∠A,∠APB=∠ABC,
∴△ABP∽△ACB,故本选项错误;
C、∵∠A=∠A,AB2=APAC,即
∴△ABP∽△ACB,故本选项错误;
D、根据 和∠A=∠A不能判断△ABP∽△ACB,故本选项正确;
故选:D.

【考点精析】认真审题,首先需要了解相似三角形的判定(相似三角形的判定方法:两角对应相等,两三角形相似(ASA);直角三角形被斜边上的高分成的两个直角三角形和原三角形相似; 两边对应成比例且夹角相等,两三角形相似(SAS);三边对应成比例,两三角形相似(SSS)).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网