题目内容
【题目】如图(1)所示,E为矩形ABCD的边AD上一点,动点P、Q同时从点B出发,点P沿折线BE﹣ED﹣DC运动到点C时停止,点Q沿BC运动到点C时停止,它们运动的速度都是1cm/秒.设P、Q同发t秒时,△BPQ的面积为ycm2.已知y与t的函数关系图象如图(2)(曲线OM为抛物线的一部分),则下列结论:①AD=BE=5;②cos∠ABE=;③当0<t≤5时,y=t2;④当t=秒时,△ABE∽△QBP;其中正确的结论是 (填序号).
【答案】①③④.
【解析】
根据图(2)可得,当点P到达点E时点Q到达点C,
∵点P、Q的运动的速度都是1cm/秒,
∴BC=BE=5,
∴AD=BE=5,故①小题正确;
又∵从M到N的变化是2,
∴ED=2,
∴AE=AD﹣ED=5﹣2=3,
在Rt△ABE中,AB===4,
∴cos∠ABE==,故②小题错误;
过点P作PF⊥BC于点F,
∵AD∥BC,
∴∠AEB=∠PBF,
∴sin∠PBF=sin∠AEB==,
∴PF=PBsin∠PBF=t,
∴当0<t≤5时,y=BQPF=tt=t2,故③小题正确;
当t=秒时,点P在CD上,此时,PD=﹣BE﹣ED=﹣5﹣2=,
PQ=CD﹣PD=4﹣=,
∵=,==,
∴=,
又∵∠A=∠Q=90°,
∴△ABE∽△QBP,故④小题正确.
综上所述,正确的有①③④.
【题目】华联超市第一次用7000元购进甲、乙两种商品,其中甲商品的件数是乙商品件数的2倍,甲、乙两种商品的进价和售价如表:(注:获利=售价﹣进价)
甲 | 乙 | |
进价(元/件) | 20 | 30 |
售价(元/件) | 25 | 40 |
(1)该超市购进甲、乙两种商品各多少件?
(2)该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得多少利润?
(3)该超市第二次以第一次的进价又购进甲、乙两种商品,其中甲商品的件数不变,乙商品的件数是第一次的3倍:甲商品按原价销售,乙商品打折销售,第二次两种商品都售完以后获得的总利润比第一次获得的总利润多800元,求第二次乙商品是按原价打几折销售?