题目内容

【题目】如图,在△ABC中,∠BAC=90°,AB=AC=2,以AB为直径的圆交BCD,则图中阴影部分的面积为(  )

A. 1 B. 2 C. 1+ D. 2﹣

【答案】A

【解析】

连接AD,OD,根据已知分析可得ODA,ADC都是等腰直角三角形,从而得到两个弓形的面积相等,即阴影部分的面积等于ACD的面积,根据三角形面积公式即可求得图中阴影部分的面积.

解:连接AD,OD

∵∠BAC=90°,AB=AC=2

∴△ABC是等腰直角三角形

AB是圆的直径

∴∠ADB=90°

ADBC

∴点DBC的中点

ODABC的中位线

∴∠DOA=90°

∴△ODA,ADC都是等腰直角三角形

∴两个弓形的面积相等

∴阴影部分的面积

故选:A.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网