题目内容
【题目】如图1,在平面直角坐标系中,点A(a,0)点B(b,0)为x轴上两点,点C在Y轴的正半轴上,且a,b满足等式a2+2ab+b2=0.
(1)判断△ABC的形状并说明理由;
(2)如图2,M,N是OC上的点,且∠CAM=∠MAN=∠NAB,延长BN交AC于P,连接PM,判断PM与AN的位置关系,并证明你的结论.
(3)如图3,若点D为线段BC上的动点(不与B,C重合),过点D作DE⊥AB于E,点G为线段DE上一点,且∠BGE=∠ACB,F为AD的中点,连接CF,FG.求证:CF⊥FG.
【答案】(1)△ABC是等腰三角形;(2)PM∥AN,证明见解析;(3)见解析
【解析】
(1)由题意可得a=-b,即OA=OB,根据线段垂直平分线的性质可得AC=BC,即△ABC是等腰三角形;
(2)延长AN交BC于点E,连接PM,过点M作MH⊥AE,MD⊥BP,MG⊥AC,根据等腰三角形的性质可得∠NAB=∠NBA,∠ANO=∠BNO,可得∠PNC=∠CNE,根据角平分线的性质可得PM平分∠CPB,根据三角形的外角的性质可得∠CPM=∠CAN=2∠NAB,即可得PM∥AN;
(3)延长GF至点M,使FM=FG,连接CG,CM,AM,由题意可证△AMF≌△DGF,可得AM=DG,由角的数量关系可得∠BCO=∠BDG=∠DBG,即DG=BG,根据“SAS”可证△AMC≌△BGC,可得CM=CG,根据等腰三角形性质可得CF⊥FG.
解:(1)∵a2+2ab+b2=0,
∴(a+b)2=0,
∴a=-b,
∴OA=OB,且AB⊥OC,
∴OC是AB的垂直平分线,
∴AC=BC,
∴△ACB是等腰三角形
练习册系列答案
相关题目