题目内容
【题目】如图,在平行四边形ABCD中,AB=6,∠BAD的平分线与BC的延长线交于点E、与DC交于点F,且点F为边DC的中点,∠ADC的平分线交AB于点M,交AE于点N,连接DE
(1) 求证:BC=CE
(2) 若DM=2,求DE的长
【答案】(1)证明见解析;(2)DE=.
【解析】
(1)利用平行四边形ABCD的性质得出AD=BC,AD∥BC,进一步证得△ADF≌△ECF,得出AD=CE,证得结论;
(2)连接FM,证得四边形AMFD是菱形,得出AN=NF,求得M是AB的中点,利用勾股定理求得AN,进一步得出NE,进一步利用勾股定理求得DE的长即可.
(1)证明:∵平行四边形ABCD
∴AD=BC,AD//BC
∴∠DAF=∠CEF,∠ADF=∠ECF
∵点F为CD中点
∴DF=CF
∴△ADF≌△ECF(AAS)
∴AD=CE
∴BC=CE.
(2)如图,连接FM,
∵DM平分∠ADF,AF平分∠DAB,AB∥DC,AD∥BC,
∴∠DAF=∠BAF=DFN,∠ADM=∠FDM=∠AMD,
∴AD=DF=AM,
∴四边形AMFD是菱形,
∴AF⊥DM,DN=MN=DM=1,
又∵DF=FC,DC=AB=6,
∴AM=3,
∴AN=,
∴AF=2AN=4,
∵AF=EF,
∴NE=AE-AN=6,
∴DE=.
【题目】某年5月,我国南方某省A、B两市遭受严重洪涝灾害,1.5万人被迫转移,邻近县市C、D获知A、B两市分别急需救灾物资200吨和300吨的消息后,决定调运物资支援灾区.已知C市有救灾物资240吨,D市有救灾物资260吨,现将这些救灾物资全部调往A、B两市.已知从C市运往A、B两市的费用分别为每吨20元和25元,从D市运往往A、B两市的费用别为每吨15元和30元,设从D市运往B市的救灾物资为x吨.
(1)请填写下表
A(吨) | B(吨) | 合计(吨) | |
C |
|
| 240 |
D |
| x | 260 |
总计(吨) | 200 | 300 | 500 |
(2)设C、D两市的总运费为w元,求w与x之间的函数关系式,并写出自变量x的取值范围;
(3)经过抢修,从D市到B市的路况得到了改善,缩短了运输时间,运费每吨减少m元(m>0),其余路线运费不变.若C、D两市的总运费的最小值不小于10320元,求m的取值范围.