题目内容
【题目】如图,已知是数轴上的三点,点表示的数是6,.
(1)写出数轴上点,点表示的数;
(2)点为线段的中点,,求的长;
(3)动点分别从同时出发,点以每秒6个单位长度的速度沿数轴向右匀速运动,点以每秒3个单位长度的速度沿数轴向左匀速运动,求为何值时,原点恰好为线段的中点.
【答案】(1)A表示的数是-10,B表示的数是2;(2)7或13;(3)当t=时,原点O为PQ的中点
【解析】
(1)根据点C表示的数和B,C之间的距离可求出B表示的数,然后再根据A,B之间的距离即可求出A表示的数;
(2)根据M是AB的中点,求出BM的长度,然后分N点在C的左侧和右侧两种情况,当N在C左侧时,BN=BC-CN,当N在C右侧时,BN=BC+CN,最后利用MN=BM+BN即可得出答案;
(3)原点O为PQ的中点时,OP=OQ,分别用含t的代数式表示出OP,OQ,然后建立方程,解方程即可求出t的值.
∵点表示的数是6,
∴点B表示的数为
∴点A表示的数为
∴A表示的数是-10,B表示的数是2 .
(2) ∵AB=12,M是AB的中点.
∴AM=BM=6,
∵CN=3
当点N在点C的左侧时,BN=BC-CN=1,此时MN=BM+BN=6+1=7
当点N在点C的右侧时,BN=BC+CN=7,此时MN=BM+BN=6+9=13
综上所述,MN的值为7或13
(3)∵A表示的数是-10,即OA=10
C表示的数是6,即OC=6
又∵点P、点Q同时出发,且运动的时间为t
∴AP=6t,CQ=3t,
∴OP=OA-AP=10-6t,OQ=OC-CQ=6-3t
当原点O为PQ的中点时,OP=OQ
∴ 10-6t=6-3t.
解得t=
∴当t=时,原点O为PQ的中点.
练习册系列答案
相关题目