题目内容

【题目】阅读以下材料:

对数的创始人是苏格兰数学家纳皮尔(J.Nplcr,1550﹣1617年),纳皮尔发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Evlcr,1707﹣1783年)才发现指数与对数之间的联系.

对数的定义:一般地,若ax=N(a0,a1),那么x叫做以a为底N的对数,记作:x=logaN.比如指数式24=16可以转化为4=log216,对数式2=log525可以转化为52=25.

我们根据对数的定义可得到对数的一个性质:loga(MN)=logaM+logaN(a0,a1,M0,N0);理由如下:

logaM=m,logaN=n,则M=am,N=an

MN=aman=am+n,由对数的定义得m+n=loga(MN)

又∵m+n=logaM+logaN

loga(MN)=logaM+logaN

解决以下问题:

(1)将指数43=64转化为对数式_____

(2)证明loga=logaM﹣logaN(a0,a1,M0,N0)

(3)拓展运用:计算log32+log36﹣log34=_____

【答案】(1)3=log464;(2)证明见解析;(3)1.

【解析】

(1)根据题意可以把指数式43=64写成对数式;

(2)先设logaM=m,logaN=n,根据对数的定义可表示为指数式为:M=am,N=an,计算的结果,同理由所给材料的证明过程可得结论;

(3)由题意和(2)可得,将所求式子表示为:log3(2×6÷4),然后计算可得结果

(1)由题意可得,指数式43=64写成对数式为:3=log464,

故答案为:3=log464;

(2)设logaM=m,logaN=n,则M=am,N=an

==amn,由对数的定义得m﹣n=loga

∵m﹣n=logaM﹣logaN,

∴loga=logaM﹣logaN(a>0,a≠1,M>0,N>0);

(3)log32+log36﹣log34,

=log3(2×6÷4),

=log33,

=1,

故答案为:1.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网