题目内容
【题目】阅读解答题:
(几何概型)
条件:如图1:是直线同旁的两个定点.
问题:在直线上确定一点,使的值最小;
方法:作点关于直线 对称点,连接交于点,则,
由“两点之间,线段最短”可知,点即为所求的点.
(模型应用)
如图2所示:两村在一条河的同侧,两村到河边的距离分别是千米,千米, 千米,现要在河边上建造一水厂,向两村送水,铺设水管的工程费用为每千米20000元,请你在上选择水厂位置,使铺设水管的费用最省,并求出最省的铺设水管的费用.
(拓展延伸)
如图,中,点在边上,过作交于点,为上一个动点,连接,若最小,则点应该满足( )(唯一选项正确)
A. B.
C. D.
【答案】【模型应用】图见解析,最省的铺设管道费用是10000元;【拓展延伸】D
【解析】
1.【模型应用】由于铺设水管的工程费用为每千米15000元,是一个定值,现在要在CD上选择水厂位置,使铺设水管的费用最省,意思是在CD上找一点P,使AP与BP的和最小,设是A的对称点,使AP+BP最短就是使最短.
2.【拓展延伸】作点E关于直线BC的对称点F,连接AF交BC于P,此时PA+PE的值最小,依据轴对称的性质即可得到∠APC=∠DPE.
1.【模型应用】
如图所示.延长到,使,连接交于点,
点就是所选择的位置.
过作交延长线于点,
∵,
∴四边形是矩形,
∴,,
在直角三角形中, ,
千米,
∴最短路线千米,
最省的铺设管道费用是(元).
2.【拓展延伸】
如图,作点E关于直线BC的对称点F,连接AF交BC于P,此时PA+PE的值最小.
由对称性可知:∠DPE=∠FPD,
∵∠APC=∠FPD,
∴∠APC=∠DPE,
∴PA+PE最小时,点P应该满足∠APC=∠DPE,
故选:D.
【题目】科幻小说《实验室的故事》中,有这样一个情节,科学家把一种珍奇的植物分别放在不同温度的环境中,经过一段时间后,记录下这种植物高度的增长情况(如下表):
温度x/℃ | … | ﹣4 | ﹣2 | 0 | 2 | 4 | 6 | … |
植物每天高度的增长量y/mm | … | 41 | 49 | 49 | 41 | 25 | 1 | … |
由这些数据,科学家推测出植物每天高度的增长量y是温度x的二次函数,那么下列三个结论:
①该植物在0℃时,每天高度的增长量最大;
②该植物在﹣6℃时,每天高度的增长量能保持在25mm左右;
③该植物与大多数植物不同,6℃以上的环境下高度几乎不增长.
上述结论中,所有正确结论的序号是
A. ①②③ B. ①③ C. ①② D. ②③