题目内容
【题目】韦达定理:若一元二次方程ax2+bx+c=0(a≠0)的两根分别为x1、x2 , 则x1+x2=﹣ , x1x2= , 阅读下面应用韦达定理的过程:
若一元二次方程﹣2x2+4x+1=0的两根分别为x1、x2 , 求x12+x22的值.
解:该一元二次方程的△=b2﹣4ac=42﹣4×(﹣2)×1=24>0
由韦达定理可得,x1+x2=﹣=﹣=2,x1x2===﹣
x12+x22=(x1+x2)2﹣2x1x2
=22﹣2×(﹣)
=5
然后解答下列问题:
(1)设一元二次方程2x2+3x﹣1=0的两根分别为x1,x2, 不解方程,求x12+x22的值;
(2)若关于x的一元二次方程(k﹣1)x2+(k2﹣1)x+(k﹣1)2=0的两根分别为α,β,且α2+β2=4,求k的值.
【答案】(1)x12+x22=;(2)k的值为﹣1.
【解析】
(1)先根据根与系数的关系得到x1+x2=﹣, x1x2=﹣,再利用完全平方公式变形得到x12+x22=(x1+x2)2-2x1x2,然后利用整体代入的方法计算即可;
(2)根据一元二次方程(k-1)x2+(k2-1)x+(k-1)2=0的两根分别为α,β,求出两根之积和两根之和的关于k的表达式,再将α2+β2=4变形,将表达式代入变形后的等式,解方程即可.
解:(1)∵一元二次方程的△=b2﹣4ac=32﹣4×2×(﹣1)=17>0,
由根与系数的关系得:x1+x2=﹣, x1x2=﹣,
∴x12+x22=(x1+x2)2﹣2x1x2==;
(2)由根与系数的关系知:=﹣k﹣1,=k﹣1,
α2+β2=(α+β)2﹣2αβ=(k+1)2﹣2(k﹣1)=k2+3
∴k2+3=4,
∴k=±1,
∵k﹣1≠0
∴k≠1,
∴
将代入原方程:﹣2x2+4=0,
△=32>0,
∴成立,
∴k的值为.
【题目】某学校计划在总费用2300元的限额内,租用客车送234名学生和6名教师集体外出活动,每辆客车上至少要有1名教师.现有甲、乙两种大客车,它们的载客量和租金如下表所示.
甲种客车 | 乙种客车 | |
载客量/(人/辆) | 45 | 30 |
租金/(元/辆) | 400 | 280 |
(1)共需租多少辆客车?
(2)请给出最节省费用的租车方案.